| Dokumendiregister | Riigimetsa Majandamise Keskus |
| Viit | 3-6.1/77 |
| Registreeritud | 05.01.2024 |
| Sünkroonitud | 31.12.2025 |
| Liik | Kiri |
| Funktsioon | 3-6.1 |
| Sari | Looduskaitse ja jahinduse alane kirjavahetus |
| Toimik | |
| Juurdepääsupiirang | Avalik |
| Juurdepääsupiirang | |
| Adressaat | Tartu Ülikool |
| Saabumis/saatmisviis | Tartu Ülikool |
| Vastutaja | Kaupo Kohv |
| Originaal | Ava uues aknas |
JÄÄKSOODE VEEREŽIIMI TAASTAMISE KOMPLEKSUURINGU LÕPPARUANNE 1. PROJEKTI KESTUS Algus
(kuu/aasta): 24.04.2017 Lõpp:
(kuu/aasta) 01.09.2023
2. PROJEKTI TAOTLEJA (teadusasutus): Tartu Ülikool
Telefon: +372 7 375826
Aadress: Ülikooli 18, 50090 Tartu
Registrikood: 74001073
Panga rekvisiidid: SEB Pank AS, Tornimäe 2, 15010 TALLINN, arvelduskonto (IBAN): EE281010102000234007 , SWIFT/BIC: EEUHEE2X , käibemaksukohustuslase nr (VAT number): EE100030417 , tehingupartneri kood (TP kood): 605201 3. PROJEKTI JUHT: Ain Kull
(Ees- ja perekonnanimi) kaasprofessor, PhD (Amet, teaduskraad)
4. PROJEKTI PÕHITÄITJAD ARUANDEPERIOODI VÄLTEL Projekti põhitäitjad:
Ees- ja perekonnanimi Teaduskraad Ametikoht 1. Ain Kull PhD loodusgeograafia kaasprofessor 2. Valentina Sagris PhD geoinformaatika teadur 3. Edgar Karofeld PhD rakendusökoloogia kaasprofessor 4. Kai Vellak PhD taimeökoloogia kaasprofessor 5. Alar Läänelaid PhD maastikuökoloogia emeriitdotsent 6. Gert Veber PhD loodusgeograafia teadur 7. Marko Kohv PhD rakendusgeoloogia teadur 8. Mae Uri Dipl./BSc spetsialist (keemik) 9. Edgar Sepp MSc, doktorant geoinformaatika spetsialist 10. Martin Maddison PhD keskkonnatehnoloogia kaasprofessor 11. Ivika Ostonen-Märtin PhD juureökoloogia professor 12. Kristina Sohar PhD loodusgeograafia teadur 13. Iuliia Burdun PhD doktorant, kaitsnud PhD 2020 14. Tauri Tampuu PhD doktorant, kaitsnud PhD 2022 Projektiga seotud abitööjõud: 1. Kärt Erikson BSc/MSc magistrant (2023) / doktorant (2023 sept.) 2. Birgit Viru MSc/PhD doktorant, kaitsnud PhD 2020 5. PROJEKTI KULUD ARUANDEPERIOODIL 2023.a. 69267,18 eurot
Kokku
Töötasud (põhitäitjad +abitööjõud) 40702.70 Sotsiaalmaks 13408.58 Töötuskindlustusmaks 325.08 Ostetud teenused 4879.82 Lähetuskulud 4750.46 Materjalid, tarvikud, masinad, seadmed 5087.24 Muud kulud 113.30 Kokku 69267.18
Ostetud teenuste selgitus 4879.82 Mulla- ja veekeemia analüüsid biogeokeemia
laboris Lähetuskulude selgitus 4750.46 Kõik lähetused on seotud uurimisaladel
gaasi- ning veeproovide regulaarse kogumisega, drooniseire ja taimkatteseirega
Materjalide, tarvikute, masinate ja seadmete selgitus
5087.24 Fotosünteetiliselt aktiivse kiirguse mõõtmise andurid ja temperatuuriandurid. Soetati mõõteseadmetele patareisid ja akusid, seadmete hooldusmaterjale, mõõdulinte, teipe jmt. tarvikuid
Muude kulude selgitus 113.3 Kummikud, töökindad välitöödeks. Kulurida ei kajasta Tartu Ülikooli üldkulueraldist (20%) RMK-lt 2023.a. esitatud aruannete eest (arvestuslik summa 16328.22), mis kajastub eelarves pärast aruande heakskiitmist ja lepingutasu laekumist tartu Ülikoolile.
6. PROJEKTI TÄITMISE LÕPPARUANNE Rakendusuuringu „Ammendatud turbamaardlate vee-režiimi taastamise kompleksuuringu metoodika väljatöötamine ja uuringu läbiviimine“ eesmärgiks oli perioodil 2017 – 2023 luua jääksoode seisundi ja korrastamisjärgsete muutuste seiramise metoodika, rajada valimisse kuuluvas viies jääksoos seirealad ning viia läbi kogu perioodi hõlmav kompleksseire. Lõpparuandes antakse ülevaade projekti raames 2017.a. aprillist kuni 2023.a. septembrini Laiuse, Kõima, Maima, Kildemaa ja Ess-soo jääksoodes läbi viidud tegevustest ja esmastest tulemustest ning tuuakse välja peamised seire käigus tehtud tähelepanekud korrastamistööde edukust mõjutavatest teguritest. Koondaruandes käsitletud teemade detailsem analüüs (eeskätt metoodika osas) on esitatud aruande lõpus viidatud lisana esitatud artiklites ja lisamaterjalides. Seirealade rajamine, seire ja korrastamistööde ajajoon Eelneva ruumianalüüsi ning välitööde tulemuste põhjal valiti RMK poolt korrastatavate jääksoode hulgast seiratavateks aladeks Laiuse, Ess-soo, Maima, Kõima ja Kildemaa jääksood. Neist Maima ja Ess-soo moodustavad väga sarnase paari, kus on esindatud mahajäetud freesturbaväljad ja iseseisvalt taimestunud turbavõtuaugud ning nende vahel kuivemad metsastuvad tervikud ning Ess-soos ka freesturbavälja laiendamiseks eelkuivendusega kuid algse rabataimestiku eemaldamiseta ala. Selle paari puhul oli eesmärgiks korrastamistööde käigus võrrelda Lääne-Eesti ja Kagu-Eesti erinevusi (ilmastik, pealiskorraga seotud mõjutused turba- ning veeomadustele) järgnevate töötlustega aladel:
a) võrdlusalad (korrastamistööde käigus mõjutamata veerežiim ja taimestik); b) madalaveeline veekogu loodusliku taimestumisega; c) alad pinnaspaisudega stabiliseeritava veerežiimiga, kus taimestik areneb iseseisvalt; d) alad lausalise kraavide täitmisega stabiliseeritava veerežiimiga, kus taimestik areneb iseseisvalt; e) alad pinnaspaisudega stabiliseeritava veerežiimiga, kus turbasambla fragmentide siirdamisega
kiirendatakse taimestumist; f) alad lausalise kraavide täitmisega stabiliseeritava veerežiimiga, kus turbasambla fragmentide
siirdamisega kiirendatakse taimestumist. Laiuse jääksoo puhul oli kobraste tegevuse tulemusena lõunapoolses jääksoo osas kujunenud madalaveeline veekogu, põhjapoolses osas aga mahajäetud freesturbaväljal suhteliselt suure ida- läänesuunalise kõrgusgradiendiga vähe kuni mõõdukalt taimestunud ala. Korrastamistööde käigus säilitati loodusliku taimestumise teel soostuv veekogu, põhjapoolne freesturbaala jagati aga neljaks erineva veetasemega osaks, kus idapoolses osas on maapinna suhtes kõige sügavam veetase ning läänepoolses osas veetase maapinnale lähedane ning keskel võrdlusala. Kõikjal peale võrdlusala eemaldati puurinne ning veetase stabiliseeriti kraavidele rajatud pinnaspaisudega. Läänepoolsel ala rajati veetaseme tõstmise tõttu laienenud veepeegliga kraavidega alal ka raiejääkidest lainerahusti. Taimestiku puhul eeldati looduslikku arengut. Kildemaa jääksoo hõlmas nii mahajäetud freesturbavälja kui rabapoolses osas ka freesturbavälja laiendamiseks eelkuivendusega kuid algse rabataimestiku eemaldamiseta ala, mis on lausaliselt
puurindega kaetud (sarnane Ess-soo vastavale alale). Korrastamismeetmena oli kavandatud kraavide sulgemine pinnaspaisudega, tihedama puistu raadamine ning taimestiku iseseisev areng stabiliseeritud veerežiimi tingimustes. Kõima jääksoos oli korrastamisalal nii turbavõtuaukudega ala (sarnane Maimaja Ess-soo vastava tüübiga) kui ka eelkuivendusega ala (sarnane Kildemaa ja Ess-soo vastavale tüübile kuid oluliselt kõrgema veetasemega ning vähem metsastunud). Kõima uurimisala oli lausaliselt rabaliikidega taimestunud ja vajas korrastamistööde käigus vaid pinnaspaisudega kraavide sulgemist veetaseme taastamiseks ning tervikutel ja kraavide servades puurinde eemaldamist/harvendamist. 2017.a. suvel viidi seiratavates jääksoodes läbi turbalasundi sondeerimine, mille käigus hinnati turbalasundi tüseduse ruumilist varieeruvust ning määrati organoleptiliselt turba tüüp ning lagunemisaste (joonis 1). Jääklasundi omaduste ning taimestumise iseloomu järgi valiti igas jääksoos (v.a. Laiuse) kaks algseisu kõige paremini esindavat piirkonda võrdlusaladeks, kus kogu uuringu raames muudatusi ei tehta ja mille suhtes võrreldakse korrastatavate alade muutusi.
Joonis 1. Üldvaade võrdlusaladele Kõima (vasakul) ja Maima (paremal) jääksoos ning vastavalt kumbagi jääksoo võrdlusalade A ja B turbaprofiilidele. 2017.a. augustis rajati kõigil uuringualadel võrdlusalad (alad mis jäävad muutumatuks ka korrastamistööde käigus ehk referentsalad). Neile aladele installeeriti turbaveevaatluskaevud (Ess-soo 3 tk, Laiuse 2 tk, Maima 2 tk, Kõima 2 tk, Kildemaa 2 tk), veetaseme mõõtekaevud ning gaasivoogude mõõtmise püsivahendid. Samal kuul alustati igakuiste vee- ja gaasiproovide kogumist. Igakuiselt (Laiuse ja Ess-soo puhul ka kaks korda kuus) koguti võrdlusaladelt gaasiproovid (CO2, N2O, CH4), mõõdeti vaatluskaevudes ning kraavides veetase, portatiivsete seadmetega O2 sisaldus (mg/l) ning küllastatustase (O2%), pH, konduktiivsus (µS/cm), ORP (mV) ja koguti veeproovid laboratoorseteks analüüsideks. Laboratoorselt määrati igakuiselt vaatluskaevudest ning võrdlusaladega piirnevatest kraavidest kogutud veeproovidest üldsüsiniku ja üldlämmastiku, lahustunud üldsüsiniku, lahustunud orgaanilise süsiniku, lahustunud anorgaanilise süsiniku ning lahustunud üldlämmastiku sisaldus. 2018.a. suvel alustati taimkatte maapealse seire välitöid kõigis viies jääksoos (Kõima, Maima, Laiuse, Kildema ja Ess-soo), kus võrdlusaladel ja erineva planeeritava korrastamismeetodiga aladel märgistati 1x1 m püsiruudud (kokku 156), võeti nende nurgapostide koordinaadid (RTK, kasutati ka drooniseirel ankurpunktidena). Taimkatteseire püsiruudud fotografeeriti ja neil teostati taimkatte analüüs (üldkatvus, eri rinnete ja taimeliikide esinemine ja katvus). 2017-2020. a. osaleti jääksoode korrastamisprojektide koostamisel ja anti sisend projekteerijatele. 2019.a. suvel-sügisel korrastati Laiuse ja Kõima jääksood. 2020.a. rajati korrastatud Laiuse ja Kõima jääksoodes täiendavad püsiproovialad, installeeriti korrastatud aladele täiendavad piesomeetrid ning vaatluskaevud ja rajati täiendavad gaasivoogude mõõtmise alad (sh. täiendavad ujuvkambrid kraavidele ning veekogule). Neil aladel alustati igakuist seiret ning proovialadele rajatud ülevooludel veeseiret. 2020.a suvel-sügisel korrastati Maima jääksoo, oktoobris installeeriti korrastatud aladele täiendavad piesomeetrid ning vaatluskaevud ja rajati täiendavad gaasivoogude mõõtmise alad. 2021.a. suvel parandati Laiuse jääksoos eraldusvalli kõrge veetasemega ala ja kontrollala vahel ning korrigeeriti kahel alal (reguleerimatute) ülevoolude kõrgust. 2021.a. sügisel-talvel korrastati Ess-soo jääksoo ning alates 2021.a. novembrist alustati
korrastamisjärgset seiret värskelt rajatud ülevooludest. 2022.a. kevadel installeeriti Ess-soos korrastatud aladele täiendavad piesomeetrid, vaatluskaevud ja rajati täiendavad gaasivoogude mõõtmise alad ning alustati korralist igakuist seiret. 2023.a. augustis alustati Kildemaa jääksoo korrastamist. Uuringuperioodi ilmastiku ülevaade Ilmastik mõjutab oluliselt soode veerežiimi aastatevahelist muutlikkust ning seeläbi nii veega toitainete ärakannet, ökosüsteemi gaasivahetust kui ka taimestiku arengut. Looduslikus seisundis sood on suhteliselt suure puhverdamisvõimega, jääksood aga vähese puhverdamisvõimega ning eriti tundlikud on ilmastiku suhtes värskelt korrastatud alad. Kuna aastate lõikes on ilmastik olnud väga erinev, tuleb seda silmas pidada ka aastatevahelisi veetaseme, gaasivoo ning ärakande väärtusi võrreldes ning korrastamistööde üldise edukuse hindamisel. Kui korrastamiseelsel perioodil oli väga põuane vaid 2018 aasta (mis järgnes keskmisest vihmasemale 2017 lõpule), siis korrastamisjärgne periood oli oluliselt kuivem nii 2021, 2022 kui ka 2023 juulini. Uurimisperioodi iseloomustab pikaajalisest keskmisest kõrgem õhutemperatuur (joonis 2). Eriti soojad olid 2019 ja 2020 aastad, mil talvekuudel oli kuu keskmine temperatuur normist isegi kuni 6 kraadi soojem. Soojemad talvekuud tähendasid sagedasi sulaperioode ja kevadel väiksemat lumeveevaru, mistõttu soo veetase sõltus juba varakevadest alates peamiselt sademete hulgast ning päikesekiirguse intensiivsusest.
Joonis 2. Kuu keskmise õhutemperatuuri (joonisel heleroheliste tulpadena) erinevus ( ̊C) uurimisperioodil võrreldes pikaajalise keskmise kliimanormiga (joongraafik). Samblafragmentidega jääksoode korrastamine toimus 2020.a. (Maima) ja 2021.a. (Ess-soo), seetõttu on eriti oluline tähelepanu pöörata perioodi 2021-2023 ilmastikule. Talv algas suhteliselt varakult 2021.a. keskmisest külmema detsembriga kuid maapind külmus varase lumikatte (novembris) tõttu vaid osaliselt ja keskmisest soojem talve jätk (joonis 2) soodustas nii lume sulamist kui külmumata pinnasest gaasivoo eritumist. Korrastamisalade seisukohast oli aga kõige olulisem sulailmadega lumeveevaru kahanemine ja (pool)külmunud pinnasel tekkinud lombid, mis tuule tekitatud lainetusega uhtusid samblafargmentide katteks laotatud põhu vaaludesse. Talvistele keskmiselähedastele sajuhulkadele järgnes aga 2022.a. erakordselt kuiv märts (joonis 3) ning kogu järgneva aasta jooksul oli iga kuu sademete hulk ligi 40% väiksem pikaajalisest kuu sademete normist. Vaid kahel järgneval talvekuul oli sademeid keskmisest enam, kuid 2023.a. kevad algas taas väga tugeva põuaga kui sademeid langes kuude lõikes vaid 30-40 pikaajalisest normist.
Joonis 3. Kuu keskmise sademete summa (joonisel tumesiniste tulpadena) erinevus (%)uuringuperioodil võrreldes pikaajalise kuu keskmise sademete summaga (joongraafik; kuu sademete summa millimeetrites). Keskmisest kõrgem õhutemperatuur, erakordselt väike sademete hulk (132 mm normist vähem 2022.a.) ja keskmisest päikeselisem ilm (eriti 2023 aprillist juunini; joonis 4) tingis intensiivse evapotranspiratsiooni tõttu maist alates kiire veetaseme alanemise (auramine ületas sademete hulka juba märtsist) ja kuivastressi 2021.a. samblafragmentide laotamisega korrastatud uurimisaladel Ess-soo jääksoos, aga ka 2020.a. sarnaselt korrastatud Maima uurimisaladel.
Joonis 4. Kuu keskmine päikesepaiste kestuse summa (joonisel kollaste tulpadena) erinevus (%) uuringuperioodil võrreldes pikaajalise kuu keskmise päikesepaistega tundide summaga (joongraafik; kuu päikesepaistega tundide summa). Kuivale 2022. aastale järgnenud väga kuiv, päikeseline ja suhteliselt tuuline 2023.a. kevad tõi kaasa väga kiire veetaseme alanemise ning samblafragmentide kasvu pidurdumise või isegi kohati hukkumise. Maima jääksoos Ala 9 (kood P) kannatas 2020.a. suhteliselt hästi kasvama läinud turbasammal tugeva talvise külmakohrutuse all. Külmakohrutusest on Maimas iga talv olnud tugevalt mõjutatud ka võrdlusala 1 (Ala 6-2) ja Ala 8 (kood O). Ess-soos on külmakohrutuse mõju olnud väiksem, kõige enam on seal mõjutatud olnud ala 4 (kood F).
TULEMUSED Pinna- ja turbavesi Nii turbavees kui jääksoo kraavides on süsinik ja lämmastik valdavalt lahustunud vormis (vastavalt 92% ja 92% üldsüsinikust ja üldlämmastikust), lahustunud ja lahustumata vormid aga omavahel tugevalt korreleeritud. Lämmastiku ja süsinikusisaldus oli mõõtmisperioodil kõrgem turbavees, kraavides oli pindmise äravoolu ja sademetevee tõttu toimunud vähesel määral lahjendumine. Küll aga on nii kraavi- kui turbavees lahustunud süsiniku (DC) ja lahustunud lämmastiku (DN) suhe väga heaks turba mineraliseerumise indikaatoriks: DC/DN suhe on seda kõrgem ja regressioonvõrrandi seos tugevam, mida enam on ala häiritud (joonis 5).
Maima
y = 11.953Ln(x) + 27.244 R2 = 0.6754
10
20
30
40
50
60
70
0.0 1.0 2.0 3.0 4.0 5.0
Dissolved N (mg/l)
D is
so lv
ed C
(m g/
l)
Kildemaa
y = 19.46Ln(x) + 39.445 R2 = 0.7029
0
10
20
30
40
50
60
70
0.0 1.0 2.0 3.0 4.0 5.0 Dissolved N (mg/l)
D is
so lv
ed C
(m g/
l)
Joonis 5. Lahustunud süsiniku ja lahustunud üldlämmastiku vaheline seos Kildemaa ja Maima jääksoo näitel. Veekvaliteedi ruumilise autokorrelatsiooni hindamiseks koguti veeproovid nii tootmisväljakutevahelistest kraavidest, piirdekraavidest kui väljavooludest 2018 ja 2019 mais ning 2019 septembris. Veeproovide tulemused näitavad tugevat autokorrelatsiooni lahustunud süsiniku kontsentratsiooni (joonis 6) ja mõõdukat korrelatsiooni lahustunud üldlämmastiku (joonis 7) osas. Lahustunud süsinik on kõigi seirealade puhul orgaanilise süsinikuna. Vaid Maima jääksoos esines kevadel ning sügisel pikema vihmaperioodi järel anorgaanilist süsinikku (karbonaadina) Ala 5 (kood B) ja 6-1 (võrdlusala 2) seirekaevudes. Korrastamisjärgselt on 2021-2023 aastatel Ala 5 seirekaevus põhjaveeline toide suurenenud ning anorgaanilise süsiniku (DIC) ja lahustunud lämmastiku (DN) osakaal suurenenud. Eeldatavasti on see seotud pinnaspaisude jaoks liiga sügavalt ekskavaatoriga materjali võtmisel veepidemeks olnud hästilagunenud turbakihi rikkumisest.
Joonis 6. Lahustunud süsiniku (DC) kontsentratsioon (mg/l C) jääksoo kraavi- ja turbavees Ess-soo ning Kildemaa uurimisalade näitel.
Joonis 7. Lahustunud lämmastiku (DN) kontsentratsioon jääksoo kraavivees. Lahustunud lämmastiku sisaldus on väga madal (joonis 7) nii kraavides kui turbavees. Kui DC kontsentratsioon sõltus taimestumisest mõõdukalt ja olulisem oli kraavituse seisukord, siis toitainevaeses keskkonnas on lahustunud lämmastiku kontsentratsioon selgelt madalam taimestunud kraavides ning eriti madal piirkondades kus maapind on lausaliselt kaetud taimestikuga. Korrastamistööde mõju toitainete ja lahustunud süsiniku ärakandele on lühiajaline kui tööde käigus ei mõjutata põhjaveetoitelisust. Maima jääksoos suurenes lahustunud lämmastiku kontsentratsioon (joonis 8) kõige enam alal 5 (Maima B) ja 10 (Maima D). P ja E alal võib osaliselt kõrgemat DN fooni korrastamisjärgselt selgitada ka samblafragmentide laotamise järel laguneva orgaanilise ainega (kattepõhk ning surnud fragmendid).
Joonis 8. Lahustunud lämmastiku kontsentratsiooni muutus uuringuperioodi jooksul Maima jääksoos. Kuigi ka Laiuse jääksoo on toitainerikkam ja osaliselt põhjaveelise toitega, on seal korrastamisjärgsel ajal (pärast 2019 sügist) lahustunud lämmastiku sisaldus kerges langustrendis (joonis 9) ja selgitatav kiiresti areneva taimkattega ja vähese äravooluga. Kui vesi on pikema viibeajaga, siis tarbitakse lämmastikku nii taimestiku poolt kui sõltuvalt redokspotentsiaalist denitrifikatsiooni/nitrifikatsiooni protsessides. Võrdlusalal kus muutused on olnud väikesed, on ka DN püsinud stabiilsena.
Joonis 9. Lahustunud lämmastiku kontsentratsiooni muutus uuringuperioodi jooksul Maima jääksoos. Ess-soo ja Kildemaa uurimisaladel on DN sisaldus vees madal ja aastatevahelised erinevused statistiliselt ebaolulised. Küll aga on selgelt tuvastatav aastaajaline käik kõrgema kontsentratsiooniga suvekuudel, ning kuivematel aastatel (2018, 2022, 2023).
Joonis 10. Lahustunud lämmastiku kontsentratsiooni muutus uuringuperioodi jooksul Ess-soo ja Kildemaa jääksoos. Lahustunud orgaanilise süsiniku sisaldus on Maima jääksoos võrdlusalal 1 jäänud muutumatuks, võrdlusalal Maima 2 langes korrastamistööde käigus põhjaveelise toite lisandumisel väga madalale (joonis 11), aga teistel aladel on sarnane võrdlusalaga 1.
Joonis 10. Lahustunud orgaanilise süsiniku kontsentratsiooni muutus uuringuperioodi jooksul Maima jääksoos. Sarnase selge aastase käiguga kuid olulise trendita on DOC sisalduse käik ka teiste uurimisalade puhul (Laiuse, Ess-soo, Kildemaa, Kõima). Ess-soost võetud puursüdamiku 8-kuune laboratoorne inkubatsioonikatse näitab, et temperatuuri seos DOC-ga pole erinevalt CO2 voost lineaarne, aga 25 C ületav temperatuur suurendab oluliselt DOC teket turbas, olles samas sõltuvuses veetasemest/aereeritusest (Palviainen et al., 2023). Laiuse jääksoos tuleb esile korrastamistööde järgselt madalaveelise veekogu DOC sisalduse langus ja stabiliseerumine 60 mg/li tasandi lähedal.
Joonis 11. Lahustunud orgaanilise süsiniku kontsentratsiooni muutus uuringuperioodi jooksul Laiuse jääksoos.
Vaatamata suhteliselt kõrgemale kontsentratsioonile nii DN kui DOC osas, ei ole ärakanne korrastatud jääksoost suur kuna vee äravool korrastatud aladel on viimastel aastatel (ülevoolu rajamisest saati) olnud vaid lühikesel perioodil talviste sulade ajal ning kevadel lume sulamise järel, mil kontsentratsioonid on keskmisest madalamad. Laiuse jääksoo ülevoolude puhul on äravool vaid märtsis-aprillis, läänepoolses ülevoolus (madalaveelise veekogu ja Lehtmetsa raba vesi) kuni 4 kuud (märtsist juunini). Sarnane on äravoolu periood ka Maima ning Ess-soo puhul. Kõima edelapoolse kraavi äravoolu pole võimalik hinnata kuna vesi valgub ühtlaselt metsa alla. Kirdepoolses äravoolus liigub vesi novembrist maini. Täpse äravoolu koguse hindamine on takistatud kuna Ess-soos viis 30. augusti sadu ülevoolu kõrvalt pinnase ja mitmel sügiskuul puudus äravoolu mõõtmine, Laiuse läänepoolsel ülevoolul muutis kobras V-ülevoolu kuju ja suurust ning Maimal on suure veetaseme kõikumise tõttu olnud vaja vähemalt kaks korda aastas ülevoolu kõrgust reguleerida. Vooluhulga ja kontsentratsiooni järgi hinnates on süsiniku ärakanne DOC kujul jääksoodest vahemikus 62-87 kg/ha*aastas. Mullastik Korrastamistöödega seotud muutused mulla keemilistes omadustes on väga väikesed ja üldjuhul statistiliselt ebaolulised (joonis 12). Ainus oluline muutus on seotud Maima jääksoo mulla happesusega, kus ilmselt on põhjuseks vettpidava turbakihi häirimine ja selle tulemusena suurem põhjavee sissevool alale (eriti Ala 5 (B), aga ka 2 (L), 10 (D) ning 11 (E). Teiste parameetrite osas olulisi muutusi ei toimunud, aga pinnasetööde tõttu suurenes ruumiline varieeruvus. Samblafragmentide laotamisega alal tõusis pindmises kihis süsinikusisaldus keskmiselt ligi 1% võrra, kuid pole selge kas seda tingis täiendav orgaanilise aine lisandumine (sammal, põhk) või eelnevalt osaliselt mineraliseerunud pinnase koorimine.
Joonis 12. Mulla pH, üldfosfori ja üldlämmastiku sisalduse muutus korrastamistööde käigus. Maima jääksoos mulla pH muutuse ja põhjaveelise toitumuse suurenemise vahelist seost kinnitab ka lahustunud anorgaanilise lämmastiku (DN) sisalduse suurenemine poorivees ning kraavides (joonis 8). DN sisaldus on suurenenud samadel aladel (B, D, E) kus tõusis mulla pH sisaldus ning poorivee karbonaatiooni sisaldus, aga muutus ei avaldu võrdlusalal ega selle juures kraavi vees. Jääksoode mullaanalüüsi andmeid kasutati üleriigilise suuremõõtkavalise mulla fosforisisalduse kaardi koostamisel. Valminud kaart on GIS andmestikuna vabavaraliseks kasutamiseks ja metoodika osas detailsemalt kirjeldatud artiklis: Kull, Anne; Kikas, Tambet; Penu, Priit; Kull, Ain (2023). Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High- Resolution Mapping. Agronomy, 13 (5), 1183. DOI: 10.3390/agronomy13051183. Biomassi lagunemiskatsed Jääksoodes viidi läbi standardiseeritud teekotikatse rohelise ning punase (rooibos) teega ning Laiuse ja Ess-soo jääksoodes korrastamisjärgselt maa-aluse ja maapealse biomassi lagunemiskatsed. Standardiseeritud teekottide (punane e. rooibos ja rohelise tee) katse esmased tulemused Laiuse jääksoos alustatud eksperimendist lubavad oodata selget seost nii veetasemega kui taimestikuga (joonis 13). Esimese aasta massikadu on Maima ja Kildemaa jääksoos punase tee puhul sarnane Laiuse jääksoos teekottide massikaoga, kuid erinevus rohelise ja punase tee vahel on väiksem. Kildemaa jääksoos on lagunemine mõnevõrra kiirem kui Maima uurimisaladel, eriti rohelise tee osas.
Joonis 13. Vasakul teekottide paigutuse skeem katsealadel, parempoolsel joonisel punase ja rohelise tee jääkmass 3 kuu, 6 kuu, 1 aasta, 1,5 aasta ja 2 aasta pärast Laiuse võrdlusalal (control), rabametsas (Raba), kuivenduse mõjuga rabametsa servas (Kuivendatud mets) ja pinnaspaisudega korrastatud keskmise veetasemega uurimisalal (Keskmine veetase; korrastamisprojektis Ala 2, uurimisala kood Laiuse E) ning alumisel joonisel jääkmass esimese aasta lõpuks Maima ning Kildemaa võrdlusaladel. Rohelise tee lämmastikusisaldus on kõrgem (3-5%) ja imiteerib peenjuurte lagunemist ning on happelises pinnases suhteliselt suure hajuvusega. Punane tee imiteerib rohkem okaste varist ning selle lagunemine on erineva taimestiku ning veerežiimiga aladel ühtlasem. See viitab ka voortevahelises Laiuse jääksoos (turba pH 2.5-3.5, mediaan 3.1) lagundavate mikroorganismide ühtlast aktiivsust erinevates kooslustes ja rohelise teega võrreldes suhteliselt madalamat leostumiskadu, eriti esimese 6 kuu jooksul. Tulemuste põhjalikum analüüs koos kõigi keskkonnategurite (temperatuur, veetase, mullakeemia, sademed jmt) toimub koostöös Iiri ning Rootsi teadlastega ja võrdluses nende sarnaste katsete andmetega. Sarnaselt 2021.a. varakevadel Laiuse jääksoos alustatud maa-aluse ja maapealse biomassi lagunemiskatsetega laiendati 2022.a. katset värskelt korrastatud Ess-soo alale. Lagunemiskatsesse lisati standardiseeritud teekotikatsele ka eraldi proovid männi ja sookase ning villpea, jõhvika ja mustika/sinika peenjuurte ning varisega. Lagunemiskatsed (vahetult maapinnal ning 5-10 cm sügavusel turbas) rajati kuivemal ja märjemal võrdlusalal, turbasambla fragmentide laotamisega alal, pinnaspaisudega tõstetud veetasemega alal ning suletud kuivenduskraavidega rabametsa alal (joonis 14). Katse on korduste arvu järgi planeeritud kolmeaastasena.
Joonis 14. Lagunemiskatse rajamine Ess-soos uurimisalal 2022. aastal. Vasakpoolsel joonisel proovide paigaldamine alale nr. 11 (kood C) pinnaspaisudega suletud kraavidega alal ning parempoolsel joonisel proovide paigaldamine suletud kuivenduskraavidega rabametsa alal. Kaugseire Arvestades jääksoode suurt pindala, raskesti ligipääsetavust, alasisest suurt heterogeensust ning korrastamistööde puhul ka võimalikku kiiret taimkatte arengu dünaamikat, on kaugseire potentsiaalselt hea vahend seisundi hindamiseks. Käesoleva uuringu raames hinnati nii optilise seire (droon ja satelliit) kui radarkaugseire (satelliit) rakendamise võimalusi. Drooniseire peamiseks eeliseks on väga hea lahutusvõime ja võimalus lennata vastavalt vajadusele ning ilmastikuoludele. RGB kaameraga droonid on praeguseks kujunenud laiatarbekaubaks ja pildi kvaliteet on väga hea. Peamised RGB kaameraga droonide kasutamisega seotud metoodilised küsimused puudutavad erinevate aastate lõikes homogeensete aegridade saavutamist, sest vaatamata päikesekiirgusandurite ja kalibreeritud peegeldusplaatide kasutamisele on drooniseireks liiga suurte (eriti Ess-soo ja Maima) alade puhul probleemiks suur kiirgusspektri ajaline varieeruvus. Lennuaja jooksul muutuvad valgusolud ja kiirgusspekter kahandab piltide põhjal automatiseeritud taimkatteklassifitseerimise edukust erinevate ülelendude vahel, aga ka isegi sama päeva lendude osas kui kiirgusintensiivsus jõuab pika lennuaja jooksul oluliselt muutuda. Paremate sensoritega (kiirgusspektri andurid nii üles kui allasuunatuna) droonid, kalibreeritud peegeldusplaadid, georefereeritud ankurpunktid jmt. muudab aga lendamise kalliks ja töömahukaks (sh. kameraalne järeltöötlus). Maima ning Kõima jääksoo korrastamise eelse drooniandmestiku põhjal hinnati erinevate masinõppe algoritmide rakendatavust ja nende maakatte klassifitseerimise täpsust. MarjanSadat Barekaty leidis oma magistritöös Maima jääksoo põhjal, et nii Random Forest (RF), Support Vector Machine (SVM) ja K-Nearest Neighbours (KNN) meetod annavad suhteliselt sarnase tulemuse RGB kaameraga drooniandmestiku puhul. Kõrgeim kaalutud keskmine F1-skoor saadi RF vaikemudeliga kombineerituna vegetatsiooniindeksitega (0,59), sellele järgnesid KNN (0,58) ja SVM (0,57) kombineerituna vegetatsiooniindeksite ja MinMaxScaleriga. Pildi suurem pikslitihedus ei parandanud klassifitseerimise tulemust. Klassifitseerimist raskendas oluliselt UAV ortofoto kõrgest ruumilisest lahutusest tingitud müra ja maakatteklasside mitte tasakaalus olev koosseis (erinevate liikide/koosluste ruumiline esinemine ebavõrdne, mis on aga looduses tavapärane olukord). Teistele uuringutele tuginedes saaks ilmselt klassifitseerimistulemusi parandada kasutades objektipõhist pildianalüüsi (OBIA), mis töötaks paremini puurinde ning mättaid moodustavate taimede puhul ning lisades kalibreeritud multispektraalsed andmed ning lisatunnused (nt. LIDAR andmed). Sarnaselt droonipiltide töötlemise ja sellelt taimkatte tuvastamise metoodikale on võimalik automatiseeritult tuvastada ka taimestumise osakaalu taimkatteruutude fotode alusel. Uuringu käigus arendati QGIS tarkvara baasil fototuvastussüsteemi, et kõrge lahutusega fotodelt (joonis 15 a ja b) RGB kanalites automatiseeritult eristada kasvama läinud turbasambla fragmentide pindalalist katvust. Selleks fotografeeriti standardselt kõrguselt 1x2 m raami jäävad ruudud (100 tk), neist 33 kasutati õpetusalana ja 67 ala automaattuvastuse alana ning neist omakorda 33 lisaks käsitsi klassifitseeritavate kontrollaladena (joonis 15 c).
Joonis 15. Kasvama läinud turbasambla fragmentide tuvastamiseks kasutatud fotod (a ja b), mis georefereeriti ja transformeeriti ortofotodeks. Käsitsi klassifitseeritud alad kasvavate turbasamblafragmentidega (15c) on kujutatud roostepruunide areaalidega. Näited hästi tuvastatavatest fragmentidest (15 d) ja raskesti tuvastatavatest fragmentidest (15 e). Automaatne klassifitseerimine osutus tõhusaks punaka, lillaka, roheka ja rohekaskollaka tooniga turbasammalde puhul (summaarne tuvastamistõhusus 78%; joonis 15d) kuid tõhusus jäi madalamaks kollakaspruuni tooniga sammalde puhul, kus tuvastamist segasid õlgedele ning lagunevatele taimejäänustele sarnased spektraalsed omadused (joonis 15e). Samuti oli raskusi üksikute väga väikeste hajusalt paiknevate või osaliselt õlgedega kaetud väikeste fragmentide tuvastamisega. Sarnaselt drooniandmestiku töötlemisele on ka tavafotode töötlemise puhul eelduseks pildistamine sarnastes valgusoludes, suur õpetusandmestik ja suhteliselt väike eristatavate klasside arv. Suurem klasside arv või Random Forest/Bagging algoritmide kasutamine tekitab rohkem segaklasse, mille sisu on raskesti tõlgendatav. Lisaks RGB kaamerale katsetati Laiuse testalal ka infrapunakaameraga (IR) drooniseiret, et ühest küljest parandada RGB kaameraga kombineeritult taimkatteklasside eristamise võimet ja teiseks hinnata taimestumise edukust maapinna temperatuuri alusel (suvine kõrge pinnatemperatuur on hüpoteesikohaselt taimestumisele oluline takistus) ning maapinna erineva soojenemise kaudu (kaks ülelendu IR kaameraga hommikul jahtunud maapinnaga ning pärastlõunal maksimaalselt soojenenud maapinnaga ajal) välja töötada maapinna niiskuse arvutamise metoodika. Paralleelselt IR droonilennule viidi läbi ka maapinnal kontaktmeetodil pinnatemperatuuri ja mullaniiskuse (m3/m3) mõõtmine (joonis 16). IR kaameraga testiti ka erineva lennukõrguse mõju 5 m kõrguse muuduga vahemikus 35-150 meetrit, sobivaimaks lennukõrguseks on taimkattestruktuuri määramiseks 70-80 m, maapinna temperatuuri kontrasti järgi niiskuse hindamiseks piisab ka 150 m lennukõrgusest.
a) b)
c) d) e)
Joonis 16. IR kaameraga mõõdetud maapinna temperatuur (23.aug.2018, kl. 15) ja samal ajal maapinnal kontaktmeetodil mõõdetud mullaniiskus (iga lilla ja kollane punkt tähistab mõõtepunkti). Jahutuseta laiatarbe infrapunakaamera droonidele osutus kogu uurimisala katva komposiitpildi koostamiseks ebatäpseks (vt. joonis 15 vasakpoolse kujutise lennusuunast sõltuvat triibulisust) ja mõjutab seeläbi lõpptulemust. Samas temperatuurikontrasti väärtused (pärastlõunasest temperatuuri komposiitpildist lahutatud hommikune temperatuuri komposiitpilt) korreleerusid mõõdetud mullaniiskuse väärtustega. Termokaameraga droon sobib suurepäraselt ka allikaliste kohtade või hilissügisest kevadeni lekkivate pinnaspaisude tuvastamiseks. Arvestades seda, et droonipildi alusel on väga keeruline (ja/või kulukas) koostada aastateülest homogeenset aegrida, on taimestikuseire puhul kõige tõhusam drooniseire kasutamine üldise taimestumise hindamiseks dominantliikide/koosluste alusel ning nende piiride pikemaajalise muutumise jälgimiseks. Lausalise kaardistamise aluseks võiks olla k-means meetodil loodud aluskaart (selle loomine ei eelda eelnevat ala seiret), mille klassidele antakse sisu georefereeritud väliuuringute abil. Eristatavate klasside arv sõltub kasutatud lähteandmestikust, jäädes Sentinel satelliidi optiliste kanalite ja indeksite kasutamisel enamasti 5-7 klassi vahemikku, drooniseire RGB andmete puhul 7-9 klassi ning multispektraalsete kanalite kasutamisel 10-12 klassi piiresse. K-means meetodil loodud dominantklasside arvu määramine on empiiriline, eeskätt ekspertteadmistel põhinev ning vajab reeglina 3-4 erineva versiooni loomist, mille puhul statistiliselt eristunud klassid sisustatakse georefereeritud välitööandmestiku alusel uurimisalal. Neist versioonidest valitakse lõpuks välitingimustes reaalselt tuvastatavate ja looduses eristuvate klasside alusel sobivaima klasside arvuga aluskaart. Seega on drooniseire kõige paremini kasutatav a) ala (visuaalse) eelhinnangu ja seirealade esindusliku paigutuse koostamiseks, b) väiksemate alade detailseks sagedaseks võrdlemiseks (nt. veepiiri või mingi taimestikuareaali aastaajaline dünaamika), c) termokaameraga vee liikumise ja allikaliste kohtade ning paisude lekete tuvastamine, d) sisend ajas dünaamilise ruumilise kasvuhoonegaaside mudeli jaoks taimestiku katvuse muutuse alusel (eeldab vähemalt 3-4 perioodi katmist igal aastal: varakevadine lumesulamine, kevaduvine tärkamine, suvine rohtse biomassi maksimum, sügisene samblarinde seisundi hindamise aeg). Küll aga eeldab selline detailsusaste drooniseire puhul suurt arvutusjõudlust, ajakulu ning arvestatavat rahalist ressurssi. Optiline satelliitseire tagab samaaegselt suure ala katvuse, kuid on väikse ruumilise lahutusega (piksel u. 5-30 m vahemikus) ja ei saa valida ilmastiku järgi sobivat ülelennu aega. Arvestades ülelendude sagedust ja meie laiuskraadil tavapärast pilvisust, on Sentinel-2 missiooni näitel kuu kohta keskmiselt kasutada 1-2 päeva kvaliteetset kujutist (valdavalt pilvevaba) huvipakkuvast alast. Sügisel ja talvel võib esineda kuid, mil kvaliteetset kujutist ei saadagi. Korrastamata jääksoode puhul on see piisav kuna muutused on üldjuhul väikesed (erandiks kevadeti üleujutatavad alad), aga korrastamisjärgseks seireks on see aastaajalise arengu dünaamika hindamiseks ebapiisav. Küll aga sobib selline sagedus pikaajaliseks (paljude aastate üleseks, st. enam kui 10-aastase perioodi muutuste) kindla fenofaasi või aastaaja alusel (madalsoo ja rohundirikka ala puhul kesksuvine, turbasammaldega aladel sügisene periood) hindamiseks. Ülelendude sagedus aga omakorda on seotud kaetava ala suurusega (piksli suurusega) – nii näiteks saab MODIS missiooni Terra ja AQUA satelliitide abil arvutada maapinna ööpäevase temperatuuri amplituudi, aga piksli suurus ulatub kilomeetrini ja huvipakkuva ala sisu kipub hägustuma kuna hõlmab nii freesturbaväljakuid, kraave kui servas ümbritsevat ala (joonis 17).
Jääksoo korrastamine 08-10.20219
Joonis 17. Päevane maapinna temperatuur (°C) Laiuse korrastamisalal (Laiuse 1) ja looduslikus seisundis rabametsas (Laiuse_natural) Terra satelliidi andmestiku alusel aastatel 2017-2021.
Samas on sel viisil aastane pidev temperatuurikäik uuritavalt alalt tagatud ja seda saab kasutada näiteks sisendina mullahingamise (Rsoil) või ökosüsteemi hingamise (Reco) modelleerimiseks nagu näidatud jääksoode näitel Burdun et al., 2021 poolt. Vaatamata madalale ruumilisele lahutusele on selline maapinna temperatuur sisendandmestikuna parem kui lähimas ilmajaamas mõõdetud õhutemperatuuri või maapinna temperatuuri vahetu kasutamine, kuna ilmajaam asub mineraalpinnasel, kus termiline režiim on soomuldadest erinev. Ökosüsteemihingamise modelleerimiseks nii vahetult mõõdetud kui kaugseire andmete alusel on sobilik järgmine valem (Riutta et al., 2007; Järveoja et al., 2016):
Metaanivoo hindamine satelliidi andmetel põhineva maapinna temperatuuri alusel ei anna häid tulemusi kuna metanogenees on seotud sügavama anaeroobse turbakihiga ning aereeritud tsooni temperatuur pigem soosib metaani oksüdeerimist/metanotroofide poolt tarbimist ja kahandab metaanivoogu ning selle seost sügavama kihi termiliste omadustega. Kui looduslikus soos metaanivoog ligikaudu järgib aastast temperatuurikäiku (mõningase ajalise nihkega), siis jääksoodes on seos nõrk ja olulisem on sademete hulk ning poorides vee küllastatu hapnikuga. Neid näitajaid paraku praeguste teadmiste kohaselt pinnakihist sügavamal kaugseire vahenditega piisava ruumilise lahutuse ning ajasammuga ei ole võimalik tuletada. Teataval määral võimaldab seda satelliitradarandmestik (SAR), kuid ka seal on avalikult kasutatava andmestiku lainepikkus sobiv vaid väga õhukese pinnakihi kirjeldamiseks.
Joonis 18. Mõõdetud ja satelliidi maapinnatemperatuuri andmete alusel modelleeritud Reco looduslikes soodes (Männikjärve, Linnusaare), kuivendusega jääksoode osas (Kõima 1, Kildemaa 2) ja jääksoo freesturbaväljadel (allikas: Burdun et al., 2021). Optilise kaugseire abil jääksoode korrastamistööde järgse arengu kirjeldamiseks on tavapärase nähtava valguse spektriosa (RGB) kõrval otstarbekas kasutada erinevate spektriosade alusel koostatud indekseid. Kuna jääksoode seisund, korrastamismeetodid (veekogu, metsastamine, rohttaimedega madalsoo-suunaline korrastamine, samblafragmentide laotamine, pinnaspaisude kasutamine isetaimestumisega jne.) on alade lõikes varieeruvad, on vajalik erinevaid indekseid kasutada. Madalaveeliste taimestuvate veekogude puhul annab parima tulemuse NRG indeks, taimestumata veekogu piiritlemiseks aga NDPI. Avavett ja väga niisket pinnast kajastavad paremini NRG ja NGR indeksid, kuid NGR puuduseks on see, et ei suuda edasi anda infot kuivema taimestumata turbaga piirkondade kohta (mis jääksoo korrastamise seisukohast on oluline määratleda). Rohundirikka taimestikuga jääksoo, metsastunud/metsastatud jääksoo kirjeldamiseks sobib hästi laialt kasutatav taimkatteindeks NDVI. Joonis 19 illustreerib 2020.a. korrastatud Maima jääksoo erineva taimestumismääraga (ja korrastamisviisiga) alade ning seda ümbritseva looduslähedase rabataimestikuga ala näitel erinevate indeksite võimekust seisundit kirjeldada.
Joonis 19. Sentinel-2 satelliidi andmete alusel arvutatud indeksid Maima korrastatud jääksoo näitel (21.09.2023). RGB (Red/Green/Blue) iseloomustab tavapilti nähtavas spektriosas, NRG (nIR/R/G) indeksit kus sinine spektriosa on asendatud lähisinfrapunaga, NDVI (normalized difference vegetation index) taimkatet kajastav indeks, NGR (nIR/G/R) sarnane NRG indeksiga niiskuse kirjeldamiseks, NDPI (Normalized Difference Pond Index; (mIR1- Green)/(mIR1+Green) ja NNR (nIR/nIR/Red).
Satelliidiseire andmete alusel kiire hinnangu andmiseks korrastamise edukuse kohta lühiajalise perioodi alusel (mõned aastad) on takistuseks väheste pilvevabade kaadrite esinemine. Atmosfääri läbipaistvus (eriti pilvisus, veeaur) mõjutab oluliselt kõigi optilise seire kanalite alusel arvutatud indeksite väärtust ja võib mõjutada arvutatud ajalisi trende. On üsna sage, et kogu kuu lõikes pole ühtegi hea lahutusega (piksel 10m või väiksem) pilti kogu uurimisala kohta ning erineva pilvisusega tehtud piltide alusel komposiitpilt lahendab probleemi vaid osaliselt. Joonis 20 iseloomustab Maima jääksoo näitel 2022 sügisest (kuiva pika põuase suvega aasta) ja 2023 sügiseni (kuiva kevadsuvega aasta) näitel ühe aasta jooksul RGB, NDVI ja NRG indeksite aastaajalist dünaamikat. Tähelepanu tuleks pöörata Ala 1 (kood M), 5 (B), 7 (N) kiirele taimestumisele valdavalt pilliroo, villpea ja tarnadega ning samblafragmentide laotamisega kuid kõrge veetaseme all kannatavate alade 3 (K) ja 4 (C) kokkuveoteeäärse tsooni muutustele ning normaaltingimustes sobiliku ala 9 (P) seisundi muutusele.
Joonis 20. Korrastatud Maima jääksoo seisundi muutus iga kuu parima kvaliteediga (pilvevabama) pildi alusel RGB (vasakpoolne veerg), NDVI (keskmine veerg) ja NRG (parempoolne veerg) näitel 2022 sügisest alates kuni 2023.a. sügiseni. NDVI mustja ja punakad toonid iseloomustavad rohelise taimestikuta (ja/või veega ning tehispinnasega alasid, tumeroheline lausaliselt taimestunud alasid).
Joonis 20. järg
Joonis 20. järg Joonis 20 illustreerib hästi kuidas 2023.a. väga kuiva suve järel kahanes juulini veega kaetud ala, aga septembris oli taastunud liiga kõrge veetase peaaegu kevadise seisuni (eriti ilmekas Ala 6-1, 4, 1, 7 ja 11 näitel, eriti NRG indeksiga väljendatuna). Seejuures pilvevabade piltide puudumise tõttu ei tule kaugseire andmetest välja, et muutus toimus lühikese aja jooksul just vahetult pärast augustikuise pildi tegemist ning järgmiste ülelendude ajal oli taevas lausalise pilvkattega.
Satelliidi radarandmestiku (SAR) puhul on eeliseks selle vähene sõltuvus ilmastikust või pilvisusest, kuid ülelendude sagedus on väike ja aluspinna koherentsuse muudu alusel pindalaline lahutusvõime tagasihoidlik (enamasti vajalik hektarile lähenev pindala, et sisulisi muutusi ajas eristada). Kõrgusmuudu kaudu niiskusrežiimi muutumise hindamine DInSAR (järjestikuste kujutiste faaside alusel arvutamise meetod) on soos võimalik (nn. soo hingamise mõõtmine) ja enamasti üsna täpne (mõõdetav millimeetrites), kuid probleemiks on ülelendude sagedus, sest erandlikel juhtudel võib kahe pildi vahelisel perioodil maapinna kõrguse muut sadude tõttu ületada faasi ulatust (Sentinel 1 C-band puhul u. 2.5 cm) ja sel juhul tegelik kõrgusmuut jääb teadmata arvu faaside võrra ekslikuks (Tampuu et al., 2023). SAR andmestikku on võimalik kasutada muutuste tuvastamiseks ka koherentsuse kaudu. Sel juhul on soodes vertikaalne-vertikaalne polarisatsioon muutuste kirjeldamiseks tõhusam kui vertikaalne- horisontaalne polarisatsiooni kasutamine, kuna viimasel on just jääksoodes suurem hajuvus (joonis 21).
Joonis 21. Sünteetilise apertuurradari (SAR) erinevate polarisatsioonide hajuvus (nii tõusva kui laskuva suhtelise orbiidi RON alusel 6-päevase sammuga andmestiku põhjal lumevabal perioodil) loodusliku lageraba, jääksoo ning kasutuses oleva freesturbavälja võrdluses (Tampuu et al., 2020). Maima jääksoo uurimisperioodi hõlmav koherentsuse muutuses endisel freesturbaväljal ja turbavõtuaukudega alal võrreldes loodusliku taustaalaga tuleb väga selgelt esile järsk muutus freesturbaväljal alates 2020 a. lõpust (joonis 22), mil veetase järsult freesturbaväljakutel tõusis ning seejärel kajastuvad 2022.a. kuiv suvine-sügisene ning 2023 kuiv suvine periood kasvava koherentsusena (veega kaetud ala kahaneb). Looduslik ning turbavõtuaukudega ala reageerivad 2022 põuale aga vastandsuunalisena (kuiva turbasambla niiskus ja vastavalt elektrijuhtivus kahaneb).
Joonis 22. SAR kahe suhtelise orbiidi (RON 58 ja 80) alusel vertikaalne-vertikaalne polarisatsiooniga jääksoo korrastamisega seotud muudatuste tuvastamine Maima jääksoos endisel freesturbaväljal (Maima_frees), turbaaukude piirkonnas (serv) ning raba looduslikul taustaalal (looduslik).
Ka Ess-soo uurimisalal on täheldatavad sarnased muutused SAR andmestiku alusel (joonised 23, 24).
Joonis 23. Ess-soo SAR pilt suhteliselt orbiidilt RON 160 kevadel kõrgema veetasemega perioodil 1. märtsil 2022. Sinakad toonid iseloomustavad madalat koherentsust (puurinne, vaba veepind) ning kollakad ja punakad toonid suuremat koherentsust. Mustad piirjooned tähistavad Ess-soo erinevaid korrastamisalasid, millest on välja jäetud eraldavad pinnaspaisud, kokkuveotee ning kraavid ja üleminekulised tsoonid.
Joonis 22. SAR andmete alusel vertikaalne-vertikaalne polarisatsiooniga jääksoo korrastamisega seotud muudatuste tuvastamine Maima ja Ess-soo jääksoos. Ülemine joonis iseloomustab 2020.a lõpus järsu veetaseme tõusu tõttu suurt muutust Maima jääksoos, kuid 2021.a. sügisel Ess-soos sarnast õleujutust ei esinenud ning muutus koherentsuses on tagasihoidlikum. Alumine joonis iseloomustab korrastatud alase väga sarnast sünkroonsust maapinna niiskuse muutuses põua tõttu 2022 ja 2023.a., kuid toob ka välja erineva suhtelise orbiidi (RON) valiku olulisuse niiskuse kirjeldamise seisukohast.
Veetaseme dünaamika Veetaset, kasvuhoonegaaside voogu ning Maimas ja eriti Ess-soos värskelt korrastatud aladel samblafragmentide kasvama minekut (ka laiemalt alade taimestumist) mõjutas väga tugevalt 2022.a. ja 2023.a. ilmastik. Kui Maima jääksoos tõusis pärast korrastamist 2020.a. lõpus ja 2021.a. veetase sammalde kasvuks ebasoodsalt kõrgeks, siis Ess-soo korrastamisele järgnes kaks väga kuiva suve. Talv algas suhteliselt varakult 2021.a. keskmisest külmema detsembriga kuid maapind külmus varase lumikatte (novembris) tõttu vaid osaliselt ja keskmisest soojem talve jätk (joonis 3) soodustas nii lume sulamist kui külmumata pinnasest gaasivoo eritumist. Korrastamisalade seisukohast oli aga kõige olulisem sulailmadega lumeveevaru kahanemine ja (pool)külmunud pinnasel tekkinud lombid, mis tuule tekitatud lainetusega uhtusid samblafargmentide katteks laotatud põhu ning osaliselt ka samblafragmendid vaaludesse. Talvistele keskmiselähedastele sajuhulkadele järgnes aga 2022.a. erakordselt kuiv märts (joonis 3) ning kogu järgneva aasta jooksul oli iga kuu sademete hulk ligi 40% väiksem pikaajalisest kuu sademete normist. 2023.a. kevadsuvi osutus aga veelgi kuivemaks ja veetase alanes taas väga kiiresti, langedes Maima jääksoo võrdlusalal ning samblafragmentide laotamisega pinnaspaisudega alal 9 (kood P) ligi 60 cm sügavusele maapinna suhtes. Juulis alanud sademed küll tõstsid veetaset, aga optimaalse tasemeni (-20 cm) jõudis see alles septembris (joonis 23).
Joonis 23. Kuu keskmise veetaseme dünaamika Maima jääksoo korrastatud aladel ning võrdlusalal. Alade tähises „sph“ näitab turbasamblafragmentide laotamist, „Pais“ ala korrastamist ainult pinnaspaisude rajamisega, „Täis“ lausaliselt pinnasega täidetud kraave. Halli varjutusega ala indikeerib eelistatud veetaseme vahemikku korrastatud alal (veetase maapinna suhtes vahemikus 0...-20 cm). Laiuse jääksool on Lehtmetsa raba näol suur tagamaa madalaveelisel veekogul ning mõningane põhjavee toide, mis koostoimes Lehtmetsa peakraavil toimetavate kobrastega tagasid suhteliselt hea veetaseme stabiilsuse kogu korrastatud ala ulatuses (v.a. kõige kõrgema maapinnaga väike eraldatud idapoolne nurk) ja veetase oli kogu aasta ulatuses vahemikus 0...-40 cm (joonis 24). Sellest tulenevalt algas 2022 aastal ja jätkus 2023.a. jõudsalt ülepinnaline taimestumine Laiuse kesksel korrastamisalal (kood Laiuse E) ning läänepoolsel alal (Laiuse W), kuid jäi puudulikuks kõige kuivemal väikesel idapoolsel alal. Samuti laienes keskmiselt 4.4 meetri võrra veekogu suunas taimestunud vöönd madalaveelise veekogu põhja-, edela- ja lõunaservas, mis on madalamad ja laugema kaldaga. Kõima jääksoos on küll veetase tänu suurele looduslikule puhverdavale tagamaale ning juba algselt lausalisele samblakattele optimaalse lähedal, aga nii 2021. kui 2022.a. on veetase ilmastikust tingituna augustiks langenud madalamale kui eelnevatel aastatel. Seevastu Kõima turbavõtuaukude veetase on oluliselt tõusnud (eriti gradiendiga korrastamisala edelaosa suunas) ja turbavõtuaukude vahelised tervikud on muutunud niiskemaks, veetase kõrgem (Kõima S tervik; joonis 24) kui võrdlusalal ja kvalitatiivselt on märgatav ala lääne- ning edelaosas tervikute servades turbasambla laienemist aukudest tervikule, kanarbiku ja samblike hääbumist ning nokkheina ja villpea lisandumist.
Joonis 24. Kuu keskmise veetaseme dünaamika Kõima ja Lause jääksoo korrastatud aladel ning võrdlusalal. Kasvuhoonegaaside voog Korrastamise käigus saavutatud kõrge veetase on kahandanud turba lagunemise kiirust ja süsihappegaasi lendumist korrastatud aladelt nii Kõima, Laiuse, Ess-soo kui Maima jääksoos. Peamine mõju on Maima ja Ess-soo alal saavutatud turba lagunemise aeglustumise kaudu, Laiuse jääksoos aga ka kiiresti arenema hakanud taimestiku tõttu (peamiselt karusammal, jõhvikas, pilliroog, lääneoas ka turbasammal). Juba algselt lausalise taimkattega Kõima jääksoos gaasivoo osas statistiliselt olulisi muutusi ei ole, pigem on muutused selgitatavad aastate vahelisest ilmastiku erinevusest. Kõima jääksoo puhul on turbavõtuaukudes kõrgema veetaseme tõttu edelapoolses osas lopsakalt arenemas älvestele iseloomulikud turbasambla liigid ning kohati laieneb turbasammal ka madalamatele terviku osadele. Enamasti on tervikud siiski aeglase taimestumisega ja gaasivoogu mõjutab enam turba niiskusrežiimi muutus. Maima jääksoo kontrollala nr. 2 on aastaringselt lausaliselt 30-50 cm paksuse veekihiga kaetud ja jäetud antud analüüsist välja kuna ei vasta enam kontrollala kriteeriumitele. Kontrollala nr. 1 on samuti korrastamistööde järel märjemaks muutunud (eriti kevadel ja sügisel), mistõttu ka põuasel 2022 ja 2023.a. suvel oli seal veetase sarnane uuringuperioodi algusega, aga 2023.a. ei avaldunud see mõju veel taimestiku arengus väljaspool kraavi servasid ning ala 8 (O) piirdevalliga külgnevat peenart, kus on intensiivne jõhvika areaali laienemine. Kogu endise freesturbavälja ulatuses on domineeriv mullahingamine, autotroofne hingamine ja taimede fotosüntees on aastase voo mõttes enamasti tagasihoidlik. Erandi moodustavad pillirooga kattuvad alad (Ala 1 (M), 5 (B), 7 (N) ja turbasamblaga endised turbavõtuaugud (ala 12 (G)), kus keskpäevane ökosüsteemi CO2 sidumine (NEE, Net Ecosystem Exchange) võib ulatuda pilliroo puhul -192 mg CO2-C m2 h-1 ja turbasamblal -77 mg CO2-C m2 h-1. Enamasti jääb siiski aeglase taimestumise, laotatud põhu ja surnud samblafragmentide tõttu NEE isegi suvekuudel Maimas emissiooni poolele. Kui 2021.a. oli samblafragmentidega korrastatud aladel süsihappegaasi emissioon ligi poole väiksem kui kontrollalal ning lausalise kraavide täitmisega alal omakorda väiksem kui pinnaspaisudega suletud kraavidega alal, siis 2022.a. sellist erinevust ei esinenud ja vaid suuremalt jaolt veega üleujutatuks jäänud alad (C ja K) olid teistest väiksema emissiooniga, kuid 2023.a. oli ka neil aladel voog ülejäänuga sarnasemaks muutunud. Sellest tulenevalt on ökosüsteemi hingamine (Reco) jätkuvalt hea indikaator süsihappegaasi emissiooni väljendamiseks (joonis 25), mis toob kombineeritult välja nii mullahingamise kui taimestiku arengu mõju. Ökosüsteemi hingamine jäi vaatamata kahele järjestikusele soojale kuivale suvele valdavalt samale tasemele kui eelnevatel aastatel. 2021.a. veega kaetud aladel aga 2022 ja 2023.a. põuastel suvedel vesi soojenes kiiresti ja veetase alanes, jättes maapinna kohati mudaga kaetuks ja suurendades süsihappegaasi voogu. Erandlik on joonisel ala B (paisudega suletud kraavid, veega osaliselt üleujutatud), kus 2022.a. suvine Reco CO2-C piik on seotud intensiivse pilliroo kasvuga ning taime hingamine kombineerub sooja mudaja pinnase emissiooniga. Lisaks mõjutas üleujutatud alade voogu ka surnud kanarbiku jmt. lagunemine. 2023.a. taimestumise tõttu päevane NEE suurenes sel alal ligi 20 mg CO2-C m2 h-1 võrra ja surnud taimede lagunemine on aeglustunud.
Joonis 25. Ökosüsteemi hingamine (Reco) Maima jääksoos. Märge „veega“ iseloomustab korrastamise järgselt üleujutatud ala, „norm“ tähistab normaalse veerežiimiga ala, kus veetase jäi valdavalt maapinnast sügavamale. Aasta CO2 bilanss oli 2022.a. sambla fragmentidega korrastatud üleujutatud aladel emiteeriv (0.46 t/ha C), kraavidel pinnaspaisudega korrastatud aladel 0.86 t/ha C ning koos fragmentide laotamisega aladel 0.75 t/ha C. Turbaaukudes aga toimus tänu ohtrale päikesekiirgusele ning optimaalse lähedasele veetasemele (kohev sammal liigub sünkroonselt veetaseme muutusega, veetase 0...-15 cm) sidumine NEE -1.04 t/ga C. 2023.a. kuni augustini samblafragmentidega korrastatud aladel päevane NEE suurenes sidumise suunas ligi 10 mg CO2-C m2 h-1 võrra, aga enamikul suvekuudel jäi endiselt emiteerivaks isegi päevasel fotosünteesi toimumise ajal väga hõreda taimestiku tõttu. Kõima jääksoos on võrdlusala emiteeriv (1.9 t/ha C), turbaaukude vaheline tervik emiteerib 2.6 t/ha C, samas kui turbaaugu emissioon on 1.1 t/ha C ning kuiva suve tõttu oli ka looduslähedases seisus rabaosa emiteeriv (0.6 t/ha C) ning 2023.a. suvekuudel emissioon kasvas 2022.a. võrreldes veelgi. Laiuse jääksoos algas 2022.a. suve teises pooles ja jätkus kogu 2023.a. kiire taimkatte levik varasemalt palja turbaga alal. Kasvuala laiendasid kõige jõudsamalt karusammal ja jõhvikas, kraavides pilliroog, tarnad ning valge vesiroos. Läänepoolses osas kus turbaaukudele rajati lainetõkked, laienes kiiresti pilliroo ning hundinuiaga kaetud ala, tervikutel ja madalamates niiskemates lohkudes turbasammal. Kiire taimkatte muutuse tõttu allus mõõtmisandmestik modelleerimisele gaasimõõtmisrõngaste lõikes erinevalt (R2 0.43-0.95). Laiuse 1 (võrdlusala) on läbi kõigi aastate olnud CO2 emiteerija, Laiuse idapoolne (Laiuse E) korrastamisala oli 2021.a. emiteeriv, kuid 2022.a. saavutas sidumise jõhvikaga kaetud alal ning pillirooga taimestunud alal. Kõige märjemal alal (Laiuse W) on 2022.a. süsinikuneutraalsed või siduvad kõik taimestunud alad (joonis 26). Kraavide ning Laiuse madalaveelise veekogu süsinikubilanss on positiivne, keskmine emissioon 0.42 t/ha C. Seisva veega kraavides võib küll suve alguses vetika vohamise tõttu mõnel kuul süsihappegaasi sidumine olla intensiivne, aga suve teises pooles algab tekkinud biomassi lagunemine ja eritub nii süsihappegaasi kui metaani. 2023.a. suurenes päevane NEE sidumine kõigis korrastatud jääksoo osades 10-30 mg CO2-C m2 h-1 võrra võrreldes 2022.a., kõige enam pillirooga taimestunud pinnaspaisuga suletud kraavil.
Joonis 26. CO2 bilanss korrastatud Laiuse jääksoos. Laiuse 1 on võrdlusala, Laiuse E keskne korrastamisala võrdlusalast idas ning Laiuse W kontrollalast läänes paiknev maapinnalähedase veetasemega korrastamisala. Kõrge maapinna temperatuur ning suhteliselt kõrge veetase soodustavad metaani teket. 2022.a. olid pika põua tingimustes Maima jääksoos metaani tekkeks äärmiselt soodsad tingimused. Kuigi veega kaetud korrastatud aladel oli suvel keskmiselt kõrgem metaani emissioon, oli ka nii pinnaspaisude kui täidetud kraavidega korrastatud alasid, kus metaani voog oli suur. Samas pinnaspaisudega ala 10 (D) ja võrdlusala olid endiselt väga madala metaani emissiooniga, aga eelneval 2021.a. suvel oli just ala 10 kõrge vooga kui seal veetase lühiajaliselt väga kiiresti muutus. 2023.a. jäi eelnevate aastatega võrreldes metaanivoog oluliselt väiksemaks oli korrastamismeetodist sõltumatult sarnane.
Joonis 27. Kuu keskmine süsiniku kadu metaanina lendumise kaudu Maima kontrollalal (2017-2023) ja korrastamisjärgselt nii kontrollalal kui korrastatud aladel.
Naerugaasi voog oli 2022.a. sarnaselt eelnevatele aastatele toitainevaestes tingimustes kõigis uuritavates jääksoodes ebaoluliselt väike (joonis 28). Suhteliselt pika kuiva perioodi ja hoovihmadest tingitud veetaseme kiirete kõikumiste tulemusel suurenes N2O voog korrastamise järgselt Maimal juba 2021.a. ning veelgi selgemalt 2022.a., aga ka need vood on väga väikesed. Ainsaks erandiks oli september kui pärast pikka põuaperioodi ja sügavale langenud veetaseme juures algasid intensiivsed sajuhood, mis kiirelt täitsid pinnaspoore ning soodustasid lühiajalist naerugaasi heidet. Sarnane põuajärgne järsk naerugaasi voo lendumine septembris leidis aset ka teistel uurimisaladel. 2023.a. kiire kevadine veetaseme alanemine ja püsimine stabiilsena kuni augustis ohtrate sademete tõttu veetase taas kiirelt tõusis ja stabiliseerus, jäi naerugaasi voog väga madalaks. Teistest aladest eristub juba teist põuast aastat järjest Maima võrdlusala 1, kus korrastamise järgselt on veetase muutunud kõikuvamaks (kevadel ja sügisel naaberalade tõttu veetase kraavides tõuseb) ning see on kaasa toonud võrdlusalal naerugaasi suurema emissiooni, mis absoluutväärtuselt on siiski ebaoluline.
Joonis 28. Naerugaasi emissioon Maima jääksoost perioodil 2017-2023. Märgalade gaasivood on ajaliselt ja ruumiliselt suure varieeruvusega, seetõttu on ennatlik paari korrastamisjärgse aasta ning ühe või kahe ala tulemuste põhjal teha järeldusi korrastamismeetmete tõhususe osas. Maima jääksoos on samblafragmentide abil taimestumise kiirendamine valdavalt ebaõnnestunud liiga kõrge ning kõikuva veetaseme tõttu, aga samas on kõikidel samblafragmentide laotamisega aladel vähemalt mingil määral hajusalt kasvama läinud samblaid ning lisandunud on teisi raba liike. Aladel kuhu samblafragmente ei laotatud ei ole ka sõltumata veetasemest või paiknemisest looduslikuma taimestikuga rabaosa suhtes turbasamblaid iseseisvalt alale ilmunud. Kaks põuast suve on Maimal taimestumist oluliselt kiirendanud, eriti aladel 1 (M), 2 (L), 5 (B) ning 7 (N). Turbavõtuaukude juures on korrastamise mõju vähemärgatav, ilmselt põuaste suvede tõttu, sest kevadel on turbaaukudes veetase tervikute tasapinnani, kuid suveks taandub oluliselt. Sama tähelepanek kehtib ka Ess-soo kohta, kus taimestiku taastumise aeg on olnud oluliselt lühem, aga Ess-soos on just turbavõtuaukude ja metsas eelkuivenduskraavide sulgemisega alal veetase püsinud hästi ka suvedel ning turbasammalde laienemine olnud kiire (sh. ekskavaatori tekitatud aukudes ja pinnaspaisude külgedel niisemates lohkudes). Seevastu Laiuse jääksoos on kõigil korrastatud väljakutel ilmunud vähemalt mõnes piirkonnas ka iseseisvalt turbasamblaid, kohati on turbasammalde areaali laienemine alates 2022.a. suve lõpust muutunud kiireks. Detailne ülevaade taimkatte muutustest seiratavate jääksoode püsiseireruutudes on esitatud aruande II osas „RMK taimestiku seire KOONDARUANNE.pdf“.
Tähelepanekuid ja soovitusi korrastamisalade põhjal Alade jagamine väiksemateks hüdroloogilisteks üksusteks on ennast õigustanud, vähendades nii veelgi ulatuslikumaid üleujutusi või ulatuslikumaid liiga kuivi alasid. Iga eraldusvalli sees tuleb väljaku madalama osa juures tekitada ülevool, ülevoolude puhul tuleks kasutada reguleeritava kõrgusega ülevoolu lahendusi (joonis 29). Need on lihtsad, kuid võimaldavad vähemalt esimestel taimestumise seisukohast kriitilisel aastatel ilmastiku, projekteerimis- või ehitusvigade tõttu tekkinud veetaseme probleeme leevendada.
Joonis 29. Pinnasvall jääksoode eraldajana (vasakul) ning lihtne kuid tõhus reguleeritav ülevool veetaseme reguleerimiseks. Selliseid ülevoole tuleks kasutada iga hüdroloogiliselt eraldatud jääksoo eraldusvalli juures. Pinnaspaisudega suletavate kraavide puhul tuleks rajada igale kraavile pinnaspais iga 30 cm kõrgusmuudu kohta, aga vähemalt 3 pinnaspaisu. See võimaldab hüdroloogiliselt eraldatud üksustes juhtida väljaku madalamas piirkonnas lumesulamise vee serpentiinina läbi ala nii, et pinnaspaisudega kraavid oleks üle ühe ühendatud erineval pool kesksest pinnaspaisude reast (joonis 30). Antud lahendus on väga hästi toiminud Ess-soo põhjapoolsel alal (Alad 5, 7, 11, kood J ja H, C), soodustades vee pikemat säilitamist korrastatud alal, kuid kahandades suuremat üleujutust.
Joonis 30. Serpentiinina ühendatud kraavid Ess-soos.
Laiuse jääksoo Laiuse jääksoo oli esimene mis sai uuringualadest korrastatud 2019.a oktoobriks ning seega on korrastamisjärgseid muutusi saanud jälgida peaaegu 4 aastat. Esimesel kahel aastal oli taimestiku kujunemine aeglane ja kohati mõjutas liiga kõrge veetase, aga samas soodustas see veelindude saabumist uurimisalale, kes levitavad ka taimede seemneid ja eoseid, aga ka väetavad ala. Väetamise efekt on tugev kevadel, mil laudteed on lausaliselt väljaheidetega kaetud ning paigal seismist nõudvate välitööde korral on kasuks vihmavarju või kapuutsiga kummimantli kasutamine sõltumata ilmast. Mõju avaldub selgelt ka madalaveelise veekogu kõrgendatud DN sisalduses, mis tõuseb ka sügisese rändeperioodi ajal, kuid sügisvihmade lahjendava toime tõttu pole sama tuntav kui kevadel. Alates 2022.a. algas kiire taimestiku areng, mis jätkus jõudsalt 2023.a. 2023.a. algas ka madalaveelise veekogu kallastel taimestiku laienemine veekogu suunas. Jääksoo lääneosas laiematele kraavidele rajatud lainerahusti (joonis 31) on oma eesmärki täitnud suurepäraselt ja soodustanud kiiret taimestiku laienemist kraavides. Laienenud on peamiselt pilliroog ja hundinui, aga ka tarnad ja kohati turbasamblad.
Joonis 31. Laiuse jääksoo korrastamisalad. Taimkatte arengut Laiuse jääksoos enne korrastamist, vahetult pärast korrastamist ja uuringu lõpuaastal 2023 septembrikuiste satelliidipiltide alusel iseloomustab joonis 32. Võrreldes algseisuga on oluliselt paremini taimestunud ala loodepoolne osa, madalaveelise veekogu kallastele on kujunenud kuni mõnekümne meetri laiune sootaimedega taimestunud kaldavöönd-õõtsik, vaatamata puurinde eemaldamisele on kirdepoolne osa on NDVI indeksi väärtuse järgi taimestunud juba paremini kui kontrollala, aga kui kontrollala indeksit mõjutab eeskätt puurinne ja villpea, siis loodepoolses osas on domineerivad sootaimed (tarnad, pilliroog, rabakarusammal, jõhvikas jmt). Jõhvika areaal laieneb aastas keskmiselt 40-50 cm võrra peenarde keskosast ääreala suunas ja moodustab kohati lausalise katte.
Joonis 32. Taimkatte muutused Laiuse jääksoos enne korrastamist (2018), korrastanmise ajal (2019) ja uuringuperioodi lõpus (2023) Sentinel-2 satellidipildi alusel NRG ja NDVI indeksitena väljendatuna. Kõima jääksoo Kõima jääksoo korrastati 2019.a. lõpuks. Ala oli juba eelnevalt peaaegu lausaliselt taimestunud ja vaid üksikutes kohtades turbavõtu aukude vahelistel tervikutel oli taimestumata laike. Korrastamistööde käigus eemaldati suuremad puud evapotranspiratsiooni kahandamiseks, pinnaspaisudega suleti kraavid ja väljavool turbavõtu aukudest. Tänu eelnevalt olemasolevale rabataimestikule taastus kogu alal korrastamise käigus paljandunud pinnas kiiresti. Madalamad alad kattusid nii nokkheina kui turbasammaldega (joonis 33), kõrgemad pinnaspaisud peamiselt kanarbiku, karusambla ja villpeaga (joonis 34).
Joonis 33. Pinnaspaisude rajamiseks turba võtmise auk (vasakul) ja endine kirdepoolne kogujakraav (Kõima-N väljavool) on turbasammalde,villpea ning nokkheinaga kattumas.
Joonis 34. Kõrgemad pinnaspaisud kattuvad villpea, kanarbiku, karusambla ja murakaga, madalamad servad ja turba võtmisel tekkinud lohud nokkheinaväljaga.
Joonis 35. Pinnaspaisude tõttu seisva veega kraavid ning turbavõtuaugud täituvad turbasammaldega, tervikutel märjemates piirkondades kanarbik hääbub.
Joonis 36. Edelapoolses osas kus veetase on kõrgem ja püsivalt maapinnale lähedal ka põuastel suvedel (maapinna kalle tagab vee pealevoolu) on ka suuremad pinnaspaisud peaaegu täielikult taimestunud.
Joonis 37. Edelaoas lausaliselt täidetud kogujakraav ning vee liikumist tõkestavad massiivsed pinnaspaisud hoiavad turbavõtuaukudes veetaset kõrgena ka kesksuvel ning tagavad soodsad tingimused kiireks taimestumiseks. Turbasammaldega kaetud areaal on nelja aastaga jõudsalt laienenud.
Joonis 38. Edelapoolne väljavool on aastaringselt kuiv, soost valguv vesi on leidnud endale tee metsa alla, kuhu valgub ühtlaselt laial alal. Maima jääksoo Maima jääksoo korrastamine toimus 2020.a. sügisel ja oli uurimisaladest esimene kus kasutati kõiki erinevaid korrastamisvõtteid (madalaveeline veekogu, pinnaspaisud kraavidel, kraavide lausaline täitmine, pinnaspaisud kraavidel ja turbasambla fragmentide laotamine, kraavide lausaline täitmine ja turbasambla fragmentide laotamine, turbavõtuaukude väljavoolude sulgemine). Kavandatud tegevused osaliselt ebaõnnestusid ebaõige veetaseme tõttu, kuid soovitust kõrgem veetase ei takista soostumist. Turbasammalde areng ja levik on alal liiga kõrge või muutliku veetaseme tõttu piiratud, pilliroo, tarnade, villpea ja nokkheina, üksikutes piirkondades ka jõhvika laienemine on viimase aastaga kiirenenud.
Taimestumist kiirendas kõige enam 2022 ja 2023.a. põuased suved, mis tagas taimede arenguks soodsama veetaseme. 2021.a. lõpus väga edukalt laienenud nokkheina areaali alal 2 (L) ja 10 (D) hävitas peaaegu täielikult sügisrände eel 100-200-pealine sookurgede parv, mis rebis taimed lausaliselt juurtega välja. Uurimisalal on kohatud merikotkast (sageli Ala 4 rabapoolsel küljel kõrgema männi ladvas), kuni 20 luigest koosnevat parve, koovitajaid, põtra, hunti ja pruunkaru. Uurimisala projekteerimisel/korrastamisel tehtud suurim eksimus oli liigse vee äravoolu planeerimine läbi olemasoleva osaliselt täidetud kogujakraavi. Kõrge veetaseme korral täidetud kraavis mudajas mass kerkib koos veetasemega ja takistab vee äravoolu, suvel alaneva veetaseme korral aga alaneb ka mudajas mass äravoolukraavis ja pigem soodustab kiiremat veetaseme alanemist turbaväljal. Maima eksimust võeti arvesse Ess-soos, kus kogujakraav täideti või sulgeti pinnaspaisudega ja liigvee äravooluks kujundati eraldi voolunõva serpentiinina läbi turbaväljade.
Joonis 39. Madalaveelise märgala (Ala 1, kood M) veetase jäi planeeritust madalamaks kuna soovitud veetaseme korral oleks kõik rabapoolsed väljakud veelgi sügavamalt üleujutatud olnud. Taimestumise seisukohast on veetase alal soodne ja pilliroo, hundinuia ning tarnade jõudne levik algas 2022.a. ja 2023.a. sügiseks on taimestumine peaaegu lausaline.
Joonis 40. Kraavide lausalise täitmisega ja samblafragmentide laotamisega alal (ala 3, K) on veetase liiga kõrge, valdava osa aastast on ala veega kaetud ja taimestunud on peamiselt täidetud kraavide kohad, kus maapind kerkib koos veetasemega. Siiski leidub hajusalt ka üksikuid elusaid turbasamblaid.
Joonis 41. Ebasoodsalt kõrge veetaseme puhul toimub taimestumine kiiremini just täidetud kraavide kohal kuna seal maapind kerkib koos veetasemega. Taimestikus domineerivad villpead, hundinui, tarnad, nokkhein ja mätaste vahel üksikuid turbasamblaid, mis on fragmentide laotamisest säilinud. Veega kaetud ala on luikede kasutuses.
Joonis 42. Pinnaspaisudega suletud kraavidega turbasambla fragmentide laotamise alal on taimestumine võimalik vaid soodsa niiskusrežiimiga vööndis. Liiga sügava veega alal toimub aeglane taimestumine pilliroo ning hundinuiaga. Sobivates tingimustes on turbasambla katvus hea ja sammal elujõuline.
Joonis 43. Pinnaspaisudega suletud kraavidega alal 5 (B) toimub looduslik taimestumine kõrge veetaseme tingimustes ja levivad madalsoole iseloomulikud liigid. Taimestumise kiirust toetab sel alal lahustunud lämmastikuga rikastunud põhjavee väljakiildumine.
Joonis 44. Kraavide lausalise täitmisega ja samblafragmentide laotamisega alal (ala 11, E) on veetase liiga kõrge, valdava osa aastast on ala veega kaetud. See ala vajas korrastamisel pinnase suuremamahulist tasandamist ja seetõttu pole pindmine turbakiht tihedalt alumiste kihtidega seotud ning liigub koos veetasemega kaasa. Taimestunud on peamiselt täidetud kraavide kohad, kus maapind kerkib kergemini koos veetasemega, aga taimestumine on ulatuslikum kui sarnaselt töödeldud alal 3 (K).
Joonis 44. Lausaliselt täidetud kraavidega alal (10, D) toimub iseeneslik taimestumine ebaühtlaselt. Kanarbik ja sinikas hääbuvad, villpea, nokkhein, tarnad ja jõhvikas laiendavad areaali. Vaatamata sobivatele niisketele laikudele ala sees ja külgnemisele samblafragmentide laotamise alaga, pole iseseisvalt turbasamblaid ilmunud.
Joonis 45. Pinnaspaisudega suletud kraavidega turbasambla laotamisega alal (9, P) oli esimesel aastal sammalde elulevus väga hea, kuid järgneval talvel kannatas kõrge lumesulavee uhtumise ja tugeva külmakohrutuse all. 2022/2023 kohrutuse kahju kordus. Siiski on kogu ala samblafragmentidega hajusalt
kaetud, püsivad koloniseerimistuumakesed tekkinud ning alal on esindatud paljud tüüpilised rabaliigid. Taimestumine on küll oodatust aeglasem, aga püsiv. Sel alal on niiskemal perioodil sambalaga paremini kattunud gaasirüngastes mõõdetud päevasel ajal ökosüsteemi hingamist ületavaid CO2 sidumise väärtusi.
Joonis 46. Võrdlusala on kõige kehvemini taimestunud. Alustaimestikus domineerivad üksikud hajusalt paiknevad villpeamättad, kraavi kallastel ka jõhvikas, samblikud. Kased ja männid kannatavad mineraliseerumise ning tuuleerosiooni tõttu paljanduvate juurte käes. Kuigi korrastamise käigus võrdlusala veetase tõusis, ei ole see veel oluliselt mõjutanud taimestumist.
Joonis 47. Pinnaspaisudega suletud kraavidega ja turbasambla fragmentide laotamisega ala (7, N), mis oli korrastamise eelselt tugevalt pilliroo ja noorte mändidega kaetud, on esimesest aastast saati olnud kõikuva veetasemega, aga juba esimesel sügisel risoomidest võrsunud varred takistasid lainetusel laotatud samblafragmente ja kattepõhku ära uhtuda ning pilliroo vahel esineb ohtralt turbasammalt, huulheina, kanarbikku. Esimeste aastate tulemus on paljulubav ja samblad elujõulised, kuid ebaselge on kas pikemas perspektiivis hakkab pilliroog turbasammalt varjutama või suudab sammal moodustada tugeva ühtlase katte.
Ess-soo Ess-soo ala korrastati 2021. a. sügisel ja selle käigus tehti võrreldes Maima alaga projektis mitmeid muudatusi. Eeldatavad veetasemed modelleriti iga ala lõikes, äravooluteed planeeriti serpentiinina väljakute keskosa kaudu, kohati säilitati üleujutuste vältimiseks avatud kogujakraavi lõike ning looduslikuma rabaosa ja freesturbavälja vahele rajati kogujakraavile veekogu. Korrastamistööde käigus tehti jooksvalt täiendusi vastavalt nivelleerimise tulemustele, lisati pinnaspaise kraavidele ning rajati madala pinnasvalliga eraldatud terrasseeritud väljak. Kuigi korrastamisest on seireperioodi lõpuks möödunud alla 2 aasta ja mõlemad korrastamisjärgsed suved on olnud äärmiselt põuased ning ebasoodsad turbasambla fragmentide siirdamisega korrastamiseks, on üldtulemused siiski lootustandvad ja metoodilises mõttes võib Ess-soo korrastamist edukaks näiteks pidada.
Joonis 48. Kuigi lausaliselt täidetud kraavidega turbasambla fragmentide laotamise ala nr. 2 (N) on arvestatava pikisuunalise nõlvakaldega ja külgnev avatud äravoolukraaviga, on see põuased suved kõige edukamalt üle elanud ja elujõulisi samblafragmente esineb lausaliselt. Sarnaselt samasugusele korrastamismeetodile Maima jääksoos, on ka siin kiiremini taimestunud just täidetud kraaviga osa. Samas domineerib täidetud kraavi osas villpea, turbasammalt leidub hajusalt kõikjal ning kuivemal osal on enam kanarbikku. Kohati esineb ka nokkheina laike.
Joonis 49. Pinnaspaisudega kraavid hoiavad ka arvestatava nõlvakalde korral edukalt veetaset üleval. Samblafragmentide laotamine sel alal (1, L) pole enamasti sama edukas kui kraavide lausalise täitmisega naaberalal (2, N), kuid sobiva niiskusega piirkonnas on kujunenud ulatuslik lausalise turbasambla katvusega ala. Taimestumine toimub edukamalt ka kraavide kallastel, aga traavidevahelistel väljakutel on taimestik hõre ning elusaid turbasamblaid vähem kui naaberalal. Kas samblafragmendid on säilitanud kahe põuase suve järel elujõu, selgub järgnevatel aastatel.
Joonis 50. Kõikidel aladel kuhu samblafragmente on laotatud, on hajusalt elujõulisi turbasablaga laigukesi ning seisva veega kraavilõikudes sageli ka vohavat turbasammalt (ala 9, E).
Joonis 51. Kuigi pealtnäha mõõdab eddy covariance mast nukralt tühja välja (ala 10, D) CO2 ja CH4 voogu, on siiski kogu alal hajusalt elujõulisi turbasambla laigukesi ja soodsamate aastate saabumisel võib sambla katvus kiiresti laieneda. Sarnaselt Maima jääksoos üleujutatud mudasele väljale (ala 11, E) on ka siin esimese 2 aasta taimestumine väga tagasihoidlik, aga tüüpiliselt toimub taimestumine alguses kiiremini just täidetud kraavide kohal. Pioneerliigiks villpea, kuivematel aladel kanarbik, hajusalt elus turbasamblaid, nokkheina, huulheina.
Joonis 52. Looduslikult kujunenud sootaimestiku säilitamine korrastamise ajal kiirendab veetaseme tõstmisel maapinna kattumist taimedega. Alal 11 (B) on pinnaspaisude abil veetaseme tõstmisel ja stabiliseerimisel jõhvikas laiendanud kaetavat areaali 60-70 cm võrra aastas, kraavides hõljuval mudal laiutavad villpead ning servas laiendavad kasvuala nokkheinad.
Joonis 53. Avatuks jäävatel kraavilõikudel haost või põhupallidest tõkete tekitamine/säilitamine on kasulik nii heljumi kahandamiseks kui kraavi kinnikasvaise kiirendamise seisukohast. Kogujakraav K-17 on tõketevahelisel lõigul täitumas turbasammalde, ubalehtede, soovõhkade, villpeade ja tarnadega.
Joonis 54. Kuigi pinnaspaisud kraavidel ja terrasseerimine madala eraldusvalliga hoiavad veetaset võrdväärselt teiste korrastatud väljakutega, on alal 4 (F) turbasammalde kasvama minek oluliselt kehvem. Üheks põhjuseks oli külmunud kängardes fragmentide laotamine pärast tugevat öökülma külmunud maapinnale, teiseks põhjuseks oli sel alal erandlikult esinev külmakohrutus 2022/2023 talvel ning kolmandaks põhjuseks 2022.a. 30. augustil esinenud erakordselt intensiivne sadu (Korelas mõõdeti 24 h jooksul 84 mm sademeid), mis tulvaveega uhtus ära Ess-soo uurimisala peamise ülevoolu mulde (P3) ning uhtus peenarde kõrgematesse osadesse nii samblafragmendid kui kattepõhu.
Joonis 55. Näide meandreeruvast paisudega suletud kraave ühendavast vooluteest (vasakul) ning liiga kõrget veetaset vältivast voolunõvast (paremal).
Joonis 56. Kogujakraavi võib sulgeda laiade turbaga täidetud lõikudega, kus sulgev lävend on kaetud taimede juurtega tihedalt läbikasvanud mätastega. Selline veekogu aitab hoida freesturbavälja otstele iseloomulikku kõrgemat serva niiskemana ja tagab kiirema taimestumise ning väiksema erosiooni, mis muidu kannaks turvast madalamal paiknevatele laotatud samblafragmentidele. KOKKUVÕTE Korrastamata jääksood olid olulised CO2 allikad. Enne korrastamist oli CO2 emissioon sõltuvalt aasta ilmastikust ja alast 4.7 (3.2 – 8.3) CO2-C t/ha*a. Metaani emissioon oli tagasihoidlik 0.09 t CH4-C t/ha*a. Toitainevaese rabaturbaga jääksoode naerugaasi emissioon oli samuti väike (0.0003 N2O-N t/ha*a) ja korrastamisejärgsel oluliselt ei muutunud. CO2 voog korrastamisjärgselt kahanes ja Laiuse jääksoos neli aastat pärast korrastamist jõudis aastabilansina süsinikuneutraalsuseni. Teistel korrastatud aladel oli aasta bilanss CO2 osas jätkuvalt emiteeriv 0.4-1.9 CO2-C t/ha*a. Kuigi gaasivood on suuremad suvekuudel (v.a. naerugaas, mil puudub selge aastaajaline käik), võivad külmumata pinnasega talvekuud oluliselt mõjutada gaasivoo aastast bilanssi. Süsihappegaasi sidumist mõjutab kõige enam fotosünteetiliselt aktiivne kiirgus (PAR), temperatuur (õhu ja pindmise 10 cm mullatemperatuur). Viimastel aastatel Eestis enam Keskkonnaagentuuri hallatavates ilmajaamades PAR ei mõõdeta ja ainsad teadaolevad pidevad PAR mõõtmised toimuvad hetkel RMK jääksoodes paiknevates mõõtekohtades. Ilma PAR pideva aegreata ei ole ökosüsteemi puhasgaasivahetuse (Net Ecosystem Exchange, NEE) usaldusväärne modelleerimine võimalik. Korrastamisjärgse seire periood vastavalt 4, 3, 2 ja 0 aastat on ebapiisav, et teha järeldusi meetodite tõhususe, taimestumise kiiruse või kasvuhoonegaaside voo kahanemise kohta. Esimestel aastatel mõjutab kasvuhoonegaase samblafragmentidega korrastataval alal põhu ja surnud fragmentide lagunemine. Äärmiselt suur määramatus on seotud ilmastikuga. Taimestumine kiirenes alates kolmandast korrastamisjärgsest aastast, kuid selgusetu on kui suurt rolli selle juures mängisid viimased kaks põuase suvega aastat. Kõikidel aladel kus rakendati turbasamblafragmentide laotamist, on vähemalt hajusalt elusaid turbasambla kogumeid ja vähestel aladel moodustavad ka väiksemaid lausalise katvusega alasid. Meetodi edukust kahandas projekteerimisviga veetaseme osas Maima jääksoos ning vahetult korrastamisele järgnenud 2 väga põuast suve Ess-soos. Aladel kus turbasambla fragmente ei laotatud, iseseisvalt turbasamblaid kasvama hakanud ei ole. Samuti on sambla fragmentide laotamisega aladel
rohkem rabale iseloomulikke liike. Esimeste aastate tulemused näitavad, et samblafragmentide laotamise teel korrastatavate jääksoode puhul taimestuvad nii üleujutatavate kui põuast mõjutatud aladel kiiremine lausaliselt täidetud kraavidega alad, aga pikemas ajaskaalas ei pruugi see kehtida. Ka pinnaspaisudega kraavide kallastel laieneb taimestik. Kriitiline on siiski sobilik veetaseme vahemik ja suvine niiskuse olemasolu, see sõltub aga nii võimalikust külgnevast tagamaast kui konkreetsete aastate ilmastikust. Drooniseire on väga tõhus abivahend korrastatava alaseisundi eelnevaks kaardistamiseks, seirealade optimaalseks valikuks, allikaliste alade tuvastamiseks, pinnaspaisude lekete avastamiseks ning ligikaudseks pinnase niiskuse määramiseks. Taimkatte kaardistamiseks on võimalik kasutada k-means klasterdamisel põhinevat lähenemist koos välitööde käigus klassidele sisu andmisega või suure õpetusandmestiku olemasolul masinõppe meetodil (random forest, bagging jmt). Pikaajalise homogeense aegrea saavutamine taimkatte dünaamika kaardistamiseks on väga kallis (tehniliselt ning tööjõukulult), aeganõudev ja keeruline, mida omakorda mõjutab tehnoloogia kiire areng ning sensorite muutus. Satelliidiseire on jääksoode korrastamise tulemuslikkuse jälgimiseks asjakohane, kuid kasutegur on suurem pika seireperioodi puhul. Lühikese perioodi puhul jääb muutuste suhtes väga tundliku jääksoo dünaamika oluliselt kiiremaks (nt. veetasemete muutus ja üleujutatavate alade ulatus) kui pilvevabade piltide saamine satelliitidelt. Samuti eeldab selline seire suuremate seireruutude rakendamist maapealses seires, et andmestik oleks võrreldav piksli suurusega. Paljude klassikaliste indeksite kasutamise muudab keeruliseks ka jääksoodele sagedane olukord, kus taimede vahelt paistab vesi, mitte maapind. See raskendab ka muidu pilvedest vähem mõjutaud radari andmestiku kasutamist. Dendrokronoloogia abil on võimalik näha turbaväljade rajamisega kaasnevaid mõjusid, raskustega luua kronoloogiaid jääksoos kasvavate puude osas (puud erivanuselised ja seega muutuva nooruskasvuga ning samaaegselt kiire keskkonnatingimuste muutusega), aga veetaseme tõstmise avaldumise tuvastamiseks ei ole 3-4 aastat piisav. Männid jätavad ebasoodsates tingimustes aastarõngaid vahele ja seega nii lühikesed perioodid ei allu kronoloogia loomisele. Lahustunud orgaanilise süsiniku ja lämmastiku kontsentratsioonid korrastamisjärgselt küll kuni kaheks aastaks tõusid, kuid selgusetu on seos ilmastiku (kuumad põuased suved) ja korrastamistööde osakaalu osas. Ärakanne on aga tagasihoidlik kuna vee äravoolu esineb uuritud aladel 2-4 kuud aastas ja needki madalama kontsentratsiooniga hilissügisel ja varakevadel. Vooluhulga ja kontsentratsiooni järgi hinnates on süsiniku ärakanne DOC kujul jääksoodest vahemikus 62-87 kg/ha*aastas. Lagunemiskatse esmased tulemused näitavad, et peamine massikadu toimub väga kiiresti esimese aasta jooksul ning selles mängib omakorda suurimat rolli esimeste kuude jooksul leostumiskadu. Veetase ja taimestik mõjutavad lagunemist oluliselt. Erinevate taimsete materjalide (varis, peenjuured, erinevad liigid) lagunemiskatsete tulemused selguvad kolme aasta pärast.
7. PROJEKTIGA HAAKUVAD TEADUSTEEMAD, GRANDID, DOKTORI- JA MAGISTRITÖÖD, JÄRELDOKTORITE UURIMISTEEMAD, LEPINGUD: Teavitustegevus: Lühiartikkel projekti eesmärkidest Eesti Loodus 8/2017, lk. 5. http://www.eestiloodus.ee/arhiiv/Eesti_Loodus08_2017.pdf ja Rahvusvahelise Märgalade Kaitse Grupi kuukirjas IMCG Bulletin, June, 2017 pp. 13-14 http://www.imcg.net/media/2017/imcg_bulletin_1706.pdf. 04.10.2017 TÜ geograafia osakonna seminar projekti eesmärgi ja hetkeseisu tutvustamiseks ning võimalike täiendavate huviliste (omafinantseeringu korras) kaasamine ülikooli teistest uurimisgruppidest. 18.-19.oktoober 2017 Toilas Keskkonnaministeeriumi turbaümarlaual projekti eesmärgi ja hetkeseisu tutvustamine. Suuline ettekanne: A. Kull & G. Veber, Abandoned peat extraction sites – will future be wetter and better? 10.-12.10.2018 Tartu, 18th Baltic Peat Producers Forum. Jääksoode korrastamisega seonduvat on laiema üldsuse teavitamiseks käsitletud populaarteaduslikus väljaandes "Samblasõber" nr 23, 2020, lk 10-15: https://sisu.ut.ee/sites/default/files/samblasober/files/samblasober_23_0.pdf Esinemine ERR Aktuaalne Kaamera, Osoon ja Vikerraadios intervjuudega.
Magistritööd ja doktoritööd Ott Toomsalu, 2019. Jääksoodes toimuvate muutuste analüüsimine LiDAR andmetel. Magistritöö. Kaitsutud Tartu Ülikooli geograafia osakonnas. https://dspace.ut.ee/handle/10062/65031 MarjanSadat Barekaty, 2021. Compare the performance of applying Machine Learning concepts to landcover classification models using very high-resolution UAV data. Magistritöö. Kaitsutud Tartu Ülikooli geograafia osakonnas. https://dspace.ut.ee/handle/10062/72820 Kärt Erikson, 2022. Veerežiimi häiringute ja ilmastiku mõju hariliku männi (Pinus sylvestris L.) radiaalsele juurdekasvule Lehtmetsa soo näitel. Magistritöö. Kaitsutud Tartu Ülikooli geograafia osakonnas. https://dspace.ut.ee/handle/10062/82873 Tauri Tampuu doktoritöö: Application of spaceborne SAR polarometry and interferometry for landscape ecological studies in bogs (Tartu Ülikool, kaitstud 2022.a. augustis). Artiklid Birgit Viru, Gert Veber, Jaak Jaagus, Ain Kull, Martin Maddison, Mart Muhel, Alar Teemusk, and Ülo Mander, 2017. Winter nitrous oxide and methane emissions from drained peatlands. Geophysical Research Abstracts, Vol. 21, EGU2019-15964. The abstract identification number EGU2019-15964. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15964.pdf?pdf Tampuu, Tauri; Praks, Jaan; Uiboupin, Rivo; Kull, Ain (2020). Long Term Interferometric Temporal Coherence and DInSAR Phase in Northern Peatlands. Remote Sensing, 12 (10), ARTN 1566. DOI: 10.3390/rs12101566 Tampuu, T.; Praks, J.; Kull, A. (2020). Insar Coherence for Monitoring Water Table Fluctuations in Northern Peatlands. International Geoscience and Remote Sensing Symposium (IGARSS). IGARSS, 4738−4741. DOI: 10.1109/IGARSS39084.2020.9323709 Burdun, Iuliia; Kull, Ain; Maddison, Martin; Veber, Gert; Karasov, Oleksandr; Sagris, Valentina; Mander, Ülo (2021). Remotely Sensed Land Surface Temperature Can Be Used to Estimate Ecosystem Respiration in Intact and Disturbed Northern Peatlands. Journal of Geophysical Research Biogeosciences, 126 (11), e2021JG006411. DOI: 10.1029/2021JG006411 T. Tampuu, J. Praks, A. Kull, R. Uiboupin, T. Tamm, K. Voormansik (2021).Detecting peat extraction related activity with multi-temporal Sentinel-1 InSAR coherence time series. International Journal of Applied Earth Observation and Geoinformation,Vol. 98,102309, https://doi.org/10.1016/j.jag.2021.102309 Tampuu, Tauri; De Zan, Francesco; Shau, Robert; Praks, Jaan; Kohv, Marko; Kull, Ain (2022). Can Bog Breathing be Measured by Synthetic Aperture Radar Interferometry. 2022-July, 16−19. DOI: 10.1109/IGARSS46834.2022.9883421. Kull, Anne; Kikas, Tambet; Penu, Priit; Kull, Ain (2023). Modeling Topsoil Phosphorus—From Observation-Based Statistical Approach to Land-Use and Soil-Based High-Resolution Mapping. Agronomy, 13 (5), 1183. DOI: 10.3390/agronomy13051183 Palviainen, M., Könönen, M., Peltomaa, E., Pumpanen, J., Ojala, A., Hasselquist, E., Laudon, H., Ostonen, I., Renou-Wilson, F., Kull, A., Veber, G., Mosquera, V., and Laurén, A.: Processes affecting lateral carbon fluxes from drained forested peatlands, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6367, https://doi.org/10.5194/egusphere-egu23-6367, 2023. Tampuu, T.; Praks, J.; De Zan, F.; Kohv, M.; Kull, A. (2023). Relationship between ground levelling measurements and radar satellite interferometric estimates of bog breathing in ombrotrophic northern bogs. Mires and Peat, 29, 1−28. DOI: 10.19189/MaP.2022.OMB.Sc.1999815
8. Projekti juht (nimi): Ain Kull
Allkiri: allkirjastatud digitaalselt
Kuupäev: allkirjastatud digitaalselt
9. Taotleja allkirjaõigusliku esindaja kinnitus aruande õigsuse kohta (nimi, amet): Ain Kull, kaasprofessor
Allkiri: allkirjastatud digitaalselt
Kuupäev: allkirjastatud digitaalselt
NB! Aruanne esitada elektrooniliselt aadressil [email protected]
CAN BOG BREATHING BE MEASURED BY SYNTHETIC APERTURE RADAR INTERFEROMETRY
Tauri Tampuu1∗, Francesco De Zan2, Robert Shau2, Jaan Praks3, Marko Kohv1, Ain Kull1
1Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Str. 46, Tartu 51014, Estonia 2German Aerospace Center (DLR), Münchener Str. 20, 82234 Weßling, Oberpfaffenhofen, Germany
3School of Electrical Engineering, Aalto University, Maarintie 8, 02150 Espoo, Finland ∗Correspondence: [email protected]
ABSTRACT Accounting for relatively large seasonal and short term peat- land surface vertical displacements with Synthetic Aperture Radar Interferometry (InSAR) poses a problem of possible propagation of ambiguity errors. Notwithstanding, the ab- sence of continuous high temporal resolution peatland sur- face levelling measurements for validation has been some- thing characteristic. Based on the ground levelling from a raised bog, we demonstrate the Sentinel-1 distributed scat- terer (DS) time-series InSAR technique underestimates real surface displacements and hereby we question the accuracy of the approach over peatlands. When the relative surface change from 6-day interferograms is used instead of account- ing for the absolute change, the estimation accuracy improves (Spearman’s rho 0.82, p-value < 0.002) because 6-day in situ surface changes are usually small and do not need InSAR phase unwrapping. Despite a serious unwrapping problem in peatlands, DS time series contain useful signal and differen- tial InSAR (DInSAR) might have potential for assessment of short term peatland surface displacements in favourable con- ditions.
Index Terms— InSAR, Surface deformation, Peatland, Phase ambiguity, Sentinel-1
1. INTRODUCTION
Better understanding of seasonal peat surface displacements initiated by changes in water table (bog breathing) [1] is needed to improve spatial models of greenhouse gas emis- sions [2]. Synthetic Aperture Radar Interferometry (InSAR) is a promising tool for the task in regard to the remote lo- cation and difcult accessibility of majority of the peatlands [3] and the need for a large scale assessment [4]. Neverthe- less, accounting for relatively large peatland surface vertical displacements [5, 6], which are occasionally extremely large and rapid [7], poses a problem of possible propagation of am- biguity errors and causes unreliability of the InSAR results [8, 9]. The concern has been to a great extent overlooked and the absence of high spatial and temporal resolution ground
levelling data for validation has been characteristic to InSAR research in peatlands [10, 8].
In this paper we present the ground levelling measurement results from a raised bog in Estonia, characteristic for the Northern temperate raised bogs, and show how the Sentinel-1 distributed scatterer (DS) time-series InSAR technique [11] underestimates the real magnitude of surface deformations over the ice and snow free period in the year 2016. There- fore, we question the feasibility of the time-series approach to measure (absolute) surface differences with respect to one common master acquisition in peatlands. Instead, we demon- strate that using the relative surface difference of 6-day image pairs form DS time series or single 6-day differential inter- ferograms (conventional DInSAR approach) can yield much less biased results because of the reduced need for unwrap- ping. Also, we argue that the useful signal to capture peat- land surface vertical displacement is contained in the DS time series.
2. METHODOLOGY
The ground levelling measurements are form Umbusi raised bog (58.57°N, 26.18°E) at observation plot 6 (a hummock mi- cro site) and cover the ice and snow free period of the year 2016. The plot situates in the intact portion of the natural bog, 200 m from a deep peat layer penetrating drainage ditch. The inuence of drainage does not affect the studied plot. The thickness of peat at the plot is ∼8 m. The levelling device recording the distance to the ground was attached to a metal bar which penetrates the peat layer and is anchored in the un- derling stable mineral ground. Change in ground height was recorded with hourly interval at 3 mm resolution.
The satellite Sentinel-1 A and B (S1A and S1B) vertical- vertical (VV) polarization ascending orbit (relative orbit num- ber 160) data were used. The DInSAR processing covers the period form 1 July to 29 Oct 2016 being limited by the over- lapping period of SAR acquisitions in early summer and by ground levelling data in late autumn. The DInSAR process- ing done with SARPROZ software resulted in thirteen small
16978-1-6654-2792-0/22/$31.00 ©2022 IEEE IGARSS 2022
IG A R SS
2 0 2 2 - 2 0 2 2 IE EE
In te rn at io n al G eo
sc ie n ce
an d R em
o te
Se n si n g Sy m p o si u m
| 9 7 8 -1 -6 6 5 4 -2 7 9 2 -0 /2 2 /$ 3 1 .0 0 © 2 0 2 2 IE EE
| D O I: 1 0 .1 1 0 9 /I G A R SS 4 6 8 3 4 .2 0 2 2 .9 8 8 3 4 2 1
Authorized licensed use limited to: University of Tartu Estonia. Downloaded on October 03,2022 at 17:57:39 UTC from IEEE Xplore. Restrictions apply.
temporal baseline interferograms. A 12-day temporal base- line available before and a 6-day temporal baseline after the launch of Sentinel-1 B. Interferometric coherence estimated (weighted by the amplitude; calculated before ltering) and Modied Goldstein phase ltering applied in a window size of 10 range (rg) and 3 in azimuth (az) pixels. The resul- tant square footprint on the ground with a side of ∼40 m. Flattening and the topographic phase removal and no multi- looking applied. Thereafter, the interferograms were refer- enced to the locations of the DS reference points to account for atmospheric effects. In that way, the reference would al- ways be set at 0 π and the unambiguous change could only be found among the phase changes not greater than ±1 π (a quarter of the radar wavelength) [12, 13]. In order to widen the span where the unambiguous change can be found, we rotated the ambiguous phase (setting the reference level any- where between ±1 π) to nd the best phase t and identify phase shifts along the transect stretching from the drain at the border of the bog to the central part of the bog where natural conditions are prevailing (the study plot 6 and beyond). In such a way, the dynamics seen along the transect indicated the direction of the peat surface change (subsidence or uplift) and consequently a reference could become set (anywhere be- tween±1 π) so that the subsidence could be found in the span of up to −2 π and the uplift in 2 π.
In the DS time-series processing [11], Sentinel-1 ascend- ing relative orbit number 160 acquisitions from 2014–2020 were included. Thereafter, the part of the time series from 2016 were extracted and referenced to the median of a cluster of stable reference points (8 points available ∼4 km away) to account for atmospheric effects (also the tropospheric phase simulated from ERA5 reanalysis data is removed before the DS calculation step). Only DS points with coherence > 0.9 were included in the analysis. The DS pixel footprint on the ground approximates to a square of a ∼200 m side.
The radar line of sight (LOS) altitude measurements were projected into the vertical direction (uLOS) using the local in- cidence angle of the plot 6, assuming no horizontal motion in the peat [14]. The Spearman’s rank-order correlation (rs) was applied to estimate correlations. The levelling plot 6 is not covered by a DS point, therefore the nearest DS points surrounding the plot (15 points 125–230 m away) are used to represent the plot 6 in calculations. Correlation between the DInSAR time series from the plot 6 and from the DS point locations in the vicinity are 0.83 (p-value < 0.001).
3. RESULTS
Hummocks and ridges are the stable-most micro site elements in the bog while surface uctuations at hollows and lawns are larger. Nevertheless, even during the summer of 2016 (we could not include the spring snow melt induced surface max- imum in our study due to the unavailability of Sentinel-1 data before July 1), the difference between the maximum and min-
Fig. 1. The DS and DInSAR line of sight altitude change projected to vertical direction (uLOS) compared to relative in situ vertical surface deformation between consecutive SAR acquisition dates at the Umbusi plot 6 hummock. The daily precipitation sum corresponds to the latest of the dates of the image pair.
imum in situ recorded surface height on the dates of SAR ac- quisition is more than 5 cm. The surface height difference from the yearly maximum would have been larger and sur- face height differences between years signicantly larger (as indicated by the water table uctuations in the bogs of Endla mire complex [15] 35 km north of Umbusi bog). Contrary, the relative surface height change between the consecutive SAR acquisition dates is considerably smaller and was only once larger than the Sentinel-1 LOS height of ambiguity in 2016 as shown in Figure 1. Nevertheless, we have to consider that the portion of hummocks and ridges versus hollows and lawns varies by different bogs and even by parts of the same bog.
In accordance with the known difculty of correct un- wrapping of the ambiguous phase [9], long temporal baselines and coinciding large in situ surface changes result in the DS time-series approach underestimating the real surface change, in line with what [8] have found. Despite the underestimation, the DS InSAR line of sight deformation projected to vertical dimension (uLOS) is following the trend in the levelling data (rs 0.76, p-value 0.004) (Figure 2a). Similarly, [16, 17] ig- nored the concerns of the absolute accuracy of InSAR and demonstrated the potential of the characteristics of the InSAR time series to be used to quantify peatland condition.
If the temporal baseline is reduced (according to the rec- ommendations by [8]) to the minimal possible (12 or 6 days in our case) via converting the absolute values of DS time series into changes between two consecutive acquisitions, then there is no need anymore for ambiguity resolution in most cases (Figure 2b). The correlation between the relative changes at the plot 6 hummock and the median relative uLOS DS defor- mation at the DS point locations in the vicinity of the plot 6 is 0.77 (p-value 0.005). The conventional DInSAR technique yields similar results. The rs of levelling data with the DIn-
17
Authorized licensed use limited to: University of Tartu Estonia. Downloaded on October 03,2022 at 17:57:39 UTC from IEEE Xplore. Restrictions apply.
(a) (b)
(c) (d)
Fig. 2. Correlation (rs) between the in situ surface deformation at the Umbusi plot 6 hummock and the InSAR line of sight deformation projected to vertical dimension (uLOS) in the ice and snow free period of 2016. Red points represent uLOS values if an ambiguous phase is added/subtracted. (a) The DS time series of absolute uLOS deformation. uLOS calculated as the median of the DS points in the vicinity of the plot 6. 2016-08-18 (the date of the maximum levelling height) taken to be the zero level. (b) The DS time series of relative uLOS deformation. (a, b) The median long term average γ shown. (c) The median DInSAR relative uLOS deformation at the DS point locations in the vicinity of the plot 6. (d) The median DInSAR relative uLOS deformation at the plot 6. A white X on a black background marks a data point of DInSAR coherence (γ) less than 0.4 (indicating unreliable phase estimates).
SAR estimates from the DS locations is 0.55 (p-value 0.077) (Figure 2c) and with the DInSAR pixel accommodating the plot 6, rs is 0.81 (p-value 0.002) (Figure 2d). The DInSAR results have been obtained with the stable reference points around 4 km away from the bog plot. A closer located stable reference points could improve results. We rotated the am- biguous phase along a transect in order to identify the direc- tion of the change. Alternatively, introduction of external data such as precipitation and temperature helps to better account for correct direction of the change [9]. The precipitation in regard to the relative DS and DInSAR surface height change estimates in Umbusi bog in 2016 ate presented in Figure 1.
4. CONCLUSION
A crucial step for application of InSAR in peatlands is the es- timation of the phase ambiguities derived from the relatively large surface height changes. We conclude, based on the in situ levelling data, that the direct application of time-series approach is unreliable in measuring seasonal and short term peatland surface vertical differences with respect to one com- mon date. The DS time series nevertheless contain the useful signal. The simplest way to tackle the ambiguity problem is to reduce the need for unwrapping by reducing temporal baselines. Consequently, we have used the relative surface difference of 6-day image pairs form DS time series or sin-
18
Authorized licensed use limited to: University of Tartu Estonia. Downloaded on October 03,2022 at 17:57:39 UTC from IEEE Xplore. Restrictions apply.
gle 6-day differential interferograms (conventional DInSAR). We conrmed based on our in situ levelling data that such an approach could reduce the estimation bias considerably in bog micro sites dominated by ridges and hummocks or areas of compacted peat which uctuate at less rapid pace and at smaller amplitude.
5. ACKNOWLEDGEMENT
This study is part of a PhD research supported by the Eu- ropean Union from the European Regional Development Fund, the national scholarship program Kristjan Jaak and by grants of Estonian State Forest Management Centre (LL- TOM17250) and Estonian Environmental Investment Centre (SLOOM12006 and SLOOM14103). The authors would like to thank Karsten Kretschmer (DLR) for help with Python and the Sarproz team for providing an excellent software with extremely exible student licensing.
6. REFERENCES
[1] Roulet N. T., “Surface Level and Water Table Fluctua- tions in a Subarctic Fen,” Arctic and Alpine Research, vol. 23, no. 3, pp. 303, 1991.
[2] Dise N. B., “Peatland Response to Global Change,” Sci- ence, vol. 326, no. 5954, pp. 810–811, 2009.
[3] Lees K. J., Quaife T., Artz R. R. E., Khomik M., and Clark J. M., “Potential for using remote sensing to es- timate carbon uxes across northern peatlands – A re- view,” Science of The Total Environment, vol. 615, pp. 857–874, 2018.
[4] Morton P. A. and Heinemeyer A., “Bog breathing: the extent of peat shrinkage and expansion on blanket bogs in relation to water table, heather management and dom- inant vegetation and its implications for carbon stock as- sessments,” Wetlands Ecology and Management, vol. 27, no. 4, pp. 467–482, 2019.
[5] Fritz C., “Surface oscillation in peatlands: How variable and important is it?,” M.S. thesis, The University of Waikato, New Zealand, 2006.
[6] Howie S. A. and Hebda R. J., “Bog surface oscilla- tion (mire breathing): A useful measure in raised bog restoration,” Hydrological Processes, vol. 32, no. 11, pp. 1518–1530, 2018.
[7] Glaser P. H., Chanton J. P., P. Morin, Rosenberry D. O., Siegel D. I., Ruud O., Chasar L. I., and Reeve A. S., “Surface Deformations as Indicators of Deep Ebullition Fluxes in a Large Northern Peatland,” Global Biogeo- chemical Cycles, vol. 18, no. 1, 2004.
[8] Alshammari L., Large D., Boyd D., Sowter A., Ander- son R., Andersen R., and Marsh S., “Long-Term Peat- land Condition Assessment via Surface Motion Mon- itoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland,” Remote Sensing, vol. 10, no. 7, pp. 1103, 2018.
[9] Heuff F. M. G. and Hanssen R. F., “Insar Phase Re- duction Using the Remove-Compute-Restore Method,” 2020, pp. 786–789, ISSN: 2153-7003.
[10] Cigna F. and Sowter A., “The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK,” Remote Sensing of Environment, vol. 202, pp. 177–198, 2017.
[11] Ansari H., De Zan F., and Bamler R., “Efcient Phase Estimation for Interferogram Stacks,” IEEE Transac- tions on Geoscience and Remote Sensing, vol. 56, no. 7, pp. 4109–4125, 2018.
[12] Novellino A., Cigna F., Brahmi M., Sowter A., Bateson L., and Marsh S., “Assessing the Feasibility of a Na- tional InSARGround DeformationMap of Great Britain with Sentinel-1,” Geosciences, vol. 7, no. 2, pp. 19, 2017.
[13] Esch C., Köhler J., Gutjahr K., and Schuh W. D., “On the Analysis of the Phase Unwrapping Process in a D- InSAR Stack with Special Focus on the Estimation of a Motion Model,” Remote Sensing, vol. 11, no. 19, pp. 2295, 2019.
[14] Hoyt A. M., Chaussard E., Seppalainen S. S., and Har- vey C. F., “Widespread subsidence and carbon emis- sions across Southeast Asian peatlands,” Nature Geo- science, vol. 13, no. 6, pp. 435–440, 2020.
[15] Tampuu T., Praks J., and A. Kull, “InSAR Coherence for Monitoring Water Table Fluctuations in Northern Peatlands,” in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 4738–4741, ISSN: 2153-7003.
[16] Alshammari L., Boyd D. S., Sowter A., Marshall C., Andersen R., Gilbert P., Marsh S., and Large D. J., “Use of Surface Motion Characteristics Determined by In- SAR to Assess Peatland Condition,” Journal of Geo- physical Research: Biogeosciences, vol. 125, no. 1, pp. e2018JG004953, 2020.
[17] Bradley A. V., Andersen R., Marshall C., Sowter A., and Large D. J., “Identication of typical eco-hydrological behaviours using InSAR allows landscape-scale map- ping of peatland condition,” Earth Surface Dynamics Discussions, pp. 1–28, 2021.
19
Authorized licensed use limited to: University of Tartu Estonia. Downloaded on October 03,2022 at 17:57:39 UTC from IEEE Xplore. Restrictions apply.