Dokumendiregister | Politsei- ja Piirivalveamet |
Viit | 2.1-3/36700-2 |
Registreeritud | 18.10.2024 |
Sünkroonitud | 24.10.2024 |
Liik | Sissetulev kiri |
Funktsioon | 2.1 Avaliku korra tagamine |
Sari | 2.1-3 Juriidiliste ja füüsiliste isikute märgukirjad, selgitustaotlused, taotlused ja avaldused |
Toimik | 2.1-3/2024 |
Juurdepääsupiirang | Avalik |
Juurdepääsupiirang | |
Adressaat | Kliimaministeerium |
Saabumis/saatmisviis | Kliimaministeerium |
Vastutaja | Andres Noormägi (administratsioon, logistikabüroo, kinnisvaragrupp) |
Originaal | Ava uues aknas |
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
1
Lode tuulepargi ehitamine Valmiera piirkonna Lode ja Ipiku valda
Keskkonnamõju hindamise aruande eelnõu avalikuks aruteluks
KOKKUVÕTE
Riia, juuli 2024
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
2
SISUKORD 1. SISSEJUHATUS .......................................................................................................................... 3 2. KAVANDATAVA TEGEVUSKOHA ÜLDINE KIRJELDUS, ASUKOHA VALIKU PÕHJENDUS .................. 4
2.1. Kavandatav tegevuskoht ja seda ümbritseva piirkonna omadused ............................... 4
2.2. Kavandatava tegevuse vastavus ruumilisele planeeringule ........................................... 7
2.3. Tuuleolude kirjeldus ........................................................................................................ 7
3. KAVANDATAVA TEGEVUSE KIRJELDUS ...................................................................................... 8 4. KESKKONNASEISUNDI KIRJELDUS JA KAVANDATAVA TEGEVUSE KESKKONNAMÕJU HINDAMINE 12
4.1. Müra .............................................................................................................................. 12
4.2. Varjutusefekt ................................................................................................................. 29
4.3. Bioloogiline mitmekesisus – taimed ja elupaigad, erikaitsealad .................................. 37
4.4. Bioloogiline mitmekesisus – nahkhiired ........................................................................ 43
4.5. Bioloogiline mitmekesisus – ornitofauna ...................................................................... 44
4.6. Maastik ja visuaalne mõju ............................................................................................. 52
4.7. Kultuuriloolised väärtused ............................................................................................ 60
4.8. Õhu kvaliteet ................................................................................................................. 62
4.10. Kliima ........................................................................................................................... 63
4.11. Geoloogia, hüdrogeoloogia (sealhulgas veevõtukohad) ja pinnaveevoolud .............. 64
4.12. Jäätmekäitlus ............................................................................................................... 66
4.13. Keskkonnariskid ja hädaolukorrad .............................................................................. 66
4.14. Sidesüsteemid ............................................................................................................. 69
4.15. Sotsiaalmajanduslikud aspektid .................................................................................. 71
4.16. Vibratsioon .................................................................................................................. 73
4.17. Elektromagnetväljade mõju ........................................................................................ 73
5. KAVANDATAVAT TEGEVUST PIIRAVAD ASJAOLUD JA LAHENDUSED KESKKONNAMÕJU VÄHENDAMISEKS ........................................................................................................................ 74 6. KAVANDATAVA TEGEVUSE ALTERNATIIVIDE VÕRDLUS ............................................................. 75 7. TINGIMUSED KAVANDATAVA TEGEVUSE EDASISEKS JÄRELEVALVEKS KESKKONNAMÕJU KONTEKSTIS ................................................................................................................................ 77 8. AVALIKKUSE KAASAMINE ........................................................................................................ 78
Lisa.
Maastikueksperdi arvamus
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
3
1. SISSEJUHATUS
Keskkonnamõju hindamine (edaspidi: KMH) on koostatud kavandatava tegevuse jaoks, tuulepargi ja sellega seotud taristu ehitamiseks Valmiera piirkonna Lode ja Ipiku valdadesse. Tuuleparki on kavas rajada 19 uut suure võimsusega tuuleelektrijaama (edaspidi: TEJ), mille koguvõimsus võiks ulatuda 136 MW-ni. Kavandatava tegevuse algataja on SIA Utilitas Wind, registreerimisnumber 40203411869, registrijärgne asukoht: Malduguņu iela 2, Mārupe, LV- 2167.
18. augustil 2023 võeti vastu riigi keskkonnaseireameti otsus nr 5-02-1/21/2023 keskkonnamõju hindamise menetluse ja piiriülese keskkonnamõju hindamise menetluse rakendamise kohta ettevõtte SIA Utilitas Wind kavandatava tegevuse suhtes. Keskkonnamõju hindamise programm nr 5-03/15/2023 väljastati 14. septembril 2023 (lisatud aruandele 1. lisana).
Kavandatava tegevuse taotluse koostamise ajal riigi keskkonnaseireametile oli SIA Utilitas Wind määranud tuulepargi uuringuala, analüüsides erinevaid võimalikke jaamade asukohti ja piiravaid tegureid. Uuringuala on analüüsitud kavandatud TEJ ehitamise asukohana.
Arvestades tuuleenergia tootmise valdkonna kiiret arengut viimastel aastatel ja ajalist viivitust planeerimise ja tuulepargi ehitamise vahel, ei hinnata KMH käigus ühte konkreetset tuuleelektrijaama mudelit, vaid võrreldakse mitut TEJ mudelit, hinnates neid iseloomulikke parameetreid, mis on olulised kavandatava tegevuse keskkonnamõju seisukohast, nagu helivõimsus, rootori läbimõõt ja jaama kõrgus. Lõplik otsus konkreetse mudeli valiku kohta tehakse vahetult enne tehnilise projekteerimise algust, lähtudes KMH käigus määratletud käitamistingimustest ning TEJ ehitamise ja käitamisega seotud kuludest, sealhulgas potentsiaalse elektritootmise mahust pikemas perspektiivis.
KMH aruande on koostanud SIA Estonian, Latvian & Lithuanian Environment riikliku keskkonnaseireameti välja antud programmi kohaselt, kaasates valdkonna eksperte. Aruandes esitatakse üksikasjalik teave kavandatava tegevuse, tuulepargi planeerimiskriteeriumide ja alternatiivsete lahenduste, samuti teave olemasoleva keskkonnaseisundi ja loodusväärtuste kohta kavandatava tegevuse territooriumil ja selle ümbruses. Riigi keskkonnaseireameti välja antud programmi tingimuste kohaselt antakse aruandes teavet eeldatavate mõjude kohta, tehakse ettepanekuid mõjude leevendamiseks või vältimiseks ning tuulepargi mõjude edasiseks seireks.
KMH aruande kokkuvõttes esitatakse kokkuvõtlikku teavet kavandatava tegevuse, selle asukoha ja eeldatava keskkonnamõju, sealhulgas tingimuste kohta tegevuse elluviimiseks.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
4
2. KAVANDATAVA TEGEVUSKOHA ÜLDINE KIRJELDUS, ASUKOHA VALIKU PÕHJENDUS
2.1. Kavandatav tegevuskoht ja seda ümbritseva piirkonna omadused
Lode tuulepark on kavas rajada Valmiera piirkonna põhjaossa, Lode valla territooriumile ning selle uuringuala piirneb Mulgi vallaga Viljandi maakonnas Eesti Vabariigis. Kavandatava tuulepargi uuringuala piirile lähim asula (küla) on Arakste, mis on umbes 0,3 km kaugusel. Eesti poolel on lähimad asulad Laatre, Saate ja Penuja. Eesti territooriumile kavandatava kaabelliini ehitamise kohta tehakse eraldi hindamine Eesti vabariigis kehtiva õigusraamistiku kohaselt.
Kavandatava tuulepargi läheduses Läti territooriumil asuvad järgmised teed, mida on kavas kasutada TEJ ehitamise ja käitamise ajal (vt ka joonis 1):
- kohalik riigitee V176 Sīļi – Eesti piir;
- kohalik riigitee V177 Ķoņi – Lode – Arakste;
- omavalitsuse tee Arakste – Bērzi;
- RAS-i „Läti riigimetsad" teed (Palejas ceļš ja Lapegļu stiga).
Eesti poolel asuvad lähimad teed, mida on samuti kavas kasutada TEJ ehitamise ja käitamise ajal:
- põhimaantee 6 Valga – Uulu;
- kõrvalmaantee 24201 Abja-Paluoja – Läti piir;
- kõrvalmaantee 24203 Veelikse – Laatre – Läti piir.
Kavandatava tegevuse piirkond asub Salaca jõe valgalas. Suurimad tuulepargi ehitusala läbivad vooluveekogud on Krūminupīte ja Veserupīte, mis on mõlemad riikliku tähtsusega ja mis on kavandatava tegevuse piirkonnas üldjuhul reguleeritud. Kavandatava tegevuse piirkond hõlmab nii maaparanduslikku põllumajandus- kui ka metsamaad. Kavandatav kaabelliin läbib Läti territooriumil riikliku tähtsusega Pestava veekogu.
Kavandatava tegevuse territoorium asub erikaitsealal – Põhja-Vidzeme biosfääri kaitseala neutraalses tsoonis1 ja kuulub piirkonda, kus tuuleelektrijaamade ehitamine on lubatud ilma kõrguspiiranguteta2, kuid kehtib piirang, et tuuleelektrijaamad peavad paiknema kuni 20 tuuleelektrijaamast koosnevates rühmades, minimeerides võimalikult suurel määral kõrvuti asuvate tuuleelektrijaamade vahelist kaugust. Tuulepargi uuringualal ei ole teisi kaitsealuseid loodusterritooriume, mikroreservaate ja nende puhvertsoone ega kaitsealuseid puid.
Lode tuulepargi uurimisala ei sisalda ühtegi saastunud või potentsiaalselt saastunud ala. See piirneb potentsiaalselt saastunud alaga – endise olmejäätmete prügilaga.
1 Põhja-Vidzeme biosfääri kaitseala seaduse (vastu võetud 11. detsembril 1997 muudatustega kuni 6. märtsini 2019) kohaselt on kehtestatud, et edendada biosfääri kaitseala territooriumil asuvate asulate tasakaalustatud ja kestlikku arengut
2 Ministrite kabineti määrus nr 303 "Põhja-Vidzeme biosfääri kaitseala individuaalsed kaitse ja kasutamise reeglid”
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
5
Kavandatava tegevuse lähiümbrus, TEJ ja sellega seotud taristu paigutus on näidatud joonistel 2 ja 3.
Joonis 1. Kavandatava Lode tuulepargi asukoht
Legend
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
Uurimisala
Küla Eesti territooriumil
Kõrgepinge õhuliin
Riigitee
Omavalitsustee
Äritee
Küla
Vallapiir
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
6
Joonis 2. Kavandatava tuulepargi paigutus, sellega seotud taristu ja ümbritseva piirkonna iseloomustus Lode vallas.
Joonis 3. Kavandatava tuulepargi paigutus, sellega seotud taristu ja ümbritseva piirkonna iseloomustus Ipiku vallas.
Legend
Kaart on seotud Läti koordinaatsüsteemi (LKS-92)
TM projektsiooniga. Põhjana on kasutatud SIA Jāņa
sēta koostatud digitaalset kaarti JS Baltija.
Tuuleelektrijaam
Planeeritud kaabli trass
Juurdepääsutee
Ehitusala
Uurimisala
Küla Eesti territooriumil
Riikliku tähtsusega kultuurimälestis
Potentsiaalselt saastunud ala
Maavarade leiukoht
Riikliku tähtsusega veekogu
Riigitee
Omavalitsustee
Äritee
Põhja-Vidzeme biosfääri reservaadi piirkonnad, kus on lubatud kuni 30 m kõrgused TEJ-d
Põhja-Vidzeme biosfääri reser- vaadi piirkonnad, kus on lubatud TEJ-d ilma kõrguspiiranguta
Soine ala
Maavarade leiukoha piiriala
Elamu / ühiskondlik hoone
Küla
Vallapiir
Piirkonna piir
Riigipiir
Legend
Kaart on seotud Läti koordinaatsüsteemi (LKS-92)
TM projektsiooniga. Põhjana on kasutatud SIA Jāņa
sēta koostatud digitaalset kaarti JS Baltija.
Tuuleelektrijaam
Planeeritud kaabli trass
Juurdepääsutee
Ehitusala
Alajaam
Uurimisala
Riikliku tähtsusega kultuurimälestis
Potentsiaalselt saastunud ala
Maavarade leiukoht
Riikliku tähtsusega veekogu
Kõrgepinge õhuliin
Riigitee
Omavalitsustee
Äritee
Mikroreservaat
Mikroreservaadi kaitsevöönd
Põhja-Vidzeme biosfääri reservaadi piirkonnad, kus on lubatud kuni 30 m kõrgused TEJ-d
Põhja-Vidzeme biosfääri reser- vaadi piirkonnad, kus on lubatud TEJ-d ilma kõrguspiiranguta
Soine ala
Mahepõllumajandus
Elamu / ühiskondlik hoone
Küla
Vallapiir
Piirkonna piir
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
7
2.2. Kavandatava tegevuse vastavus ruumilisele planeeringule
Rūjiena piirkonna ruumilise planeeringu 2012–2024 kohaselt hõlmab tuulepargi uuringuala maaüksusi või nende osasid, mille kavandatud (lubatud) kasutusala on määratud metsa- ja põllumajandusmaana.
Valla planeeringu territooriumi kasutamise ja ehitamise eeskirjade kohaselt peavad vabalt seisvad seadmed, näiteks tuuleelektrijaamad, paiknema krundil nii, et kaugus krundi piirist ei oleks väiksem kui seadme maksimaalne kõrgus, ning üle 20 kW võimsusega tuuleelektrijaamu on lubatud paigutada nii tööstus- ja tehnorajatiste hoonestusaladele (R) ning kohaliku planeeringu koostamisel ka põllumajandusaladele. Seetõttu tuleb planeeritava Lode tuulepargi rajamiseks koostada kohalik planeering ning selle alale uued territooriumi kasutamise ja ehitamise eeskirjad, millega muudetakse lubatud maakasutustüüpi, et see võimaldaks tuuleelektrijaamade rajamist, tühistades ka tingimused, mis käsitlevad kindlaksmääratud kaugusi krundi piirini, või neid muutes.
2.3. Tuuleolude kirjeldus
Üks määrav tegur, millega arvestatakse tuulepargi ehitamiseks sobivate jaamamudelite valikul, on kavandatava tegevuse piirkonna tuuleolud. Tuuleolude analüüsi tulemused näitavad, et kavandatava tegevuse piirkond on sobilik VEJ rajamiseks, vastates rahvusvahelises standardis IEC 61400-1 „Tuuleturbiinid. 1. osa: Projekteerimisnõuded“ määratud III- ja S-klassile. III- ja S-klassi TEJ-d sobivad paigaldamiseks kohtadesse, kus keskmine tuule kiirus masti kõrgusel on vähemalt 6 m/s.
Enamik tuuleelektrijaamu alustavad tööd, kui tuule kiirus on 3 m/s, ja peatuvad, kui tuule kiirus hakkab ületama 20–26 m/s. Euroopa Keskpika Ilmaennustuse Keskuse loodud mudeli ERA5 viimase 10 aasta andmetel on keskmine tuule kiirus kavandatud tegevuspiirkonnas 8,0 m/s. Olemasolevate andmete kohaselt ei tooda tuulepark elektrit keskmiselt 8% ajast, sest tuule kiirus on ebapiisav või liiga suur.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
8
3. KAVANDATAVA TEGEVUSE KIRJELDUS
Planeerimisprotsessis määratud tuulepargi uuringuala hõlmab 45 maaüksust kogupindalaga 12,34 km2. Keskkonnamõju hindamise käigus kaaluti mitut võimalikku TEJ asukohta, võttes arvesse nii võimalikku keskkonnamõju kui ka majanduslikke aspekte. Ekspertide hinnangul on tuvastatud ehitamiseks kõige sobivamad alad. Kavandatav tuulepark hõlmab 19 uusima põlvkonna tuuleelektrijaama koguvõimsusega kuni 136 MW, ühe TEJ nimivõimsus on üle 6 MW. Arvutuste kohaselt (võttes arvesse tuule keskmist kiirust 10 aasta jooksul) võiks üks Lode tuuleparki paigaldatud TEJ toota kuni 31,2 GWh elektrienergiat aastas. 19 tuulepargi toodetud koguenergia maht võiks kõikuda 375–594 GWh vahel aastas3.
Tuleb märkida, et vaid väike osa uuringualast on vajalik TEJ-de ja nendega seotud rajatiste – alajaamade ja juurdepääsuteede – ehitamiseks. Ehituse ajal võib eespool nimetatud rajatiste ehitusplatsiga piirnevaid alasid ajutiselt kasutada tee või ehitusplatsi ehitamiseks ettenähtud alalt eemaldatud materjalide, näiteks mulla ja pinnase paigutamiseks. Arvestades, et mõni TEJ on kavas rajada metsaaladele, on vajalik nende alade raadamine.
Selleks et tagada TEJ-de toodetud elektrienergia edastamine ühisvõrku, on kavas ehitada uus alajaam Valmiera piirkonnas asuvasse Ipiku valda. Lode tuulepark ühendatakse kaabelliiniga Ipikust läände kavandatud alajaamaga, luues ühendusvõimaluse kolmanda, 330 kV Eesti-Läti elektriühendusega. Rajatav kaabelliin, mis ühendab pargi alajaamaga, algab TEJ L_06 juurest, kus see ületab umbes 250 m pärast Läti–Eesti piiri, ja jätkub mööda Eesti territooriumi umbes 3 km ulatuses. Seejärel jätkub kaabelliin Läti territooriumil piki piiri kuni kitsarööpmelise raudtee Ruhja – Ipiku – Pärnu muldkehani. See lõik on umbes 1,3 km pikk. Jõudes mikroreservaadini ML 3099, suundub see läände, läbib mikroreservaadi puhvertsooni ning jätkab umbes 5,2 km läbi metsa- ja põllumaade kuni alajaamani. Kaabli trassi paigutus on näidatud joonisel 3.
Selleks et tagada TEJ-de toodetud elektrienergia ülekandmine ühisvõrku, on kavas ehitada uus alajaam Valmiera piirkonda Ipiku valda – kruntidele katastritunnustega 96560030325 ja 96560030141.
Tegevuse algataja kavatseb rajada ainult kaabelliine ja Läti energiaseaduse artikli 21 sätete kohaselt paigutada need võimaluse korral maanteevööndi. Tabelis 1 on esitatud kokkuvõte TEJ-de võimalikest asukohtadest ning joonistel 2 ja 3 on näidatud TEJ-de ja nendega seotud taristu paigutus.
Eesti territooriumile kavandatava kaabelliini ehitamise kohta tehakse eraldi hindamine Eesti Vabariigis kehtiva õigusraamistiku kohaselt.
3 Arvestamata tehnoloogilisi pause ja tootmismahu vähenemist, mis on seotud tehaste sunniviisilise peatamisega mõjude vähendamiseks
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
9
Tabel 1. Kavandatud asukohad TEJ ehitamiseks
TEJ nr Katastrinumber Maaüksuse katastritunnus
Kinnistu nimi Lubatud kasutusviis ruumilise planeeringu kohaselt
L_01; L_02
96680010010 96680010010 Ķeizari metsamaa
L_03 96680010035 96680010035 Kalnurgas metsamaa, põllumajandusmaa
L_04 96680010036 96680010118 Bērzi põllumajandusmaa
L_05 96680020011 96680010078 Vēveri põllumajandusmaa
L_06; L_07
96680010001 96680010001 Rapas metsamaa, põllumajandusmaa
L_08 96680030035 96680010041 Lucas põllumajandusmaa
L_09 96680010002 96680010043 Zīļi põllumajandusmaa
L_10 96680020077 96680010042 Pupuķi metsamaa, põllumajandusmaa
L_11 96680040021 96680010002 Mežāres metsamaa
L_12 96680010085 96680010085 Dūči metsamaa
L_13 96680010098 96680010098 Rauķupes 2 metsamaa
L_14 96680010003 96680010097 Ansētas metsamaa, põllumajandusmaa
L_15 96680010034 96680010034 Puigas - 1 metsamaa
L_16 või L_16A
96680010007 96680010006 Robežnieki metsamaa
L_17 või L_17A
96680010004 96680010004 Mežvidi metsamaa
L_18 96680010071 96680010071 Lapegļu mežs metsamaa
L_19 96680010075 96680010075 Akmeņgravas mežs
metsamaa
Ministrite kabineti 30. aprilli 2013. aasta määruse nr 240 „Üldised territooriumi planeerimise, kasutamise ja ehitamise eeskirjad“ kohaselt ei ole tuuleelektrijaamade ehitamine lubatud lähemale kui 800 m elamutest ja ühiskondlikest hoonetest. Riigi kinnisvaraameti katastriinfosüsteemis oleva teabe kohaselt ei ole planeeritava Lode tuulepargi uuringualal elamuid ega ühiskondlikke hooneid.
Potentsiaalsed asukohad TEJ-de jaoks on soovituslikud, tuginedes praegu olemasolevale teabele, ja neid võib täpsustada kinnistu piirides. Sellisel juhul tuleks tehnilise projekti koostamise käigus tagada, et muudatused vastavad asukohta piiravatele kriteeriumidele, ei mõjuta teadaolevaid loodusväärtusi, ning juhul, kui valitud lahendus erineb keskkonnamõju hindamise aruandes hinnatud lahendusest, tuleks uuesti hinnata mõju asukoha muutmisest
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
10
sõltuvatele aspektidele, nagu varjutusefekti mõjuaja arvutused, mõjutatud hoonestatud alade kindlaksmääramine ja jaamade seiskamisrežiimide väljatöötamine.
Lode tuuleparki on kavas ehitada üks uusimatest suure võimsusega TEJ mudelitest, mida pakuvad tootjad Vestas, Siemens Gamesa või Nordex, kus ühe jaama nimivõimsus võib ulatuda 5,7–7,2 MW-ni. KMH käigus ei valitud ühte konkreetset TEJ mudelit, vaid võrreldi mitut TEJ mudelit, hinnates neid kui võimalikke tehnoloogilisi alternatiive ja analüüsides nende omadusi, mis on olulised kavandatava tegevuse keskkonnamõju hindamiseks, nagu näiteks helivõimsus, rootori läbimõõt ja jaama kõrgus. Tabelis 2 on esitatud kokkuvõte TEJ-de mudelite kohta, kuid arvestades TEJ-de tehnoloogia kiiret arengut, ei välista tegevuse algataja, et tuuleparki võidakse paigaldada ka uuema põlvkonna TEJ-d, mis on samaväärsete või paremate omadustega.
Lõplik otsus konkreetse mudeli valiku kohta tehakse vahetult enne tehnilise projekteerimise algust, võttes arvesse KMH käigus määratud käitamistingimusi ning TEJ ehitamise ja käitamisega seotud kulusid, sealhulgas potentsiaalse elektritootmise mahtu pikemas perspektiivis.
Tabel 2. KMH käigus hinnatud TEJ-de mudelid
Tootja
Mudel Nimivõimsus
(MW)
Kavandatud masti kõrgus
(m)
Rootori läbimõõt
(m)
Jaama kogukõr gus (m)
Tuulekiirus (m/s), mille juures jaama
töö:
käivitub peatub
Vestas V162-4.5 6,2 166 162 ≤ 247 3 24
Vestas V172-7.2 7,2 166 172 ≤ 252 3 25
Nordex N163-5.7 5,7 164 163 ≤ 246 3 26
Siemens Gamesa
SG6.6-170 6,6 165 170 ≤ 250 3 26
KMH hindamise käigus analüüsiti, millist keskkonnamõju vähendamise tehnoloogiat on TEJ- de tootjad välja töötanud ja milliseid neist võiks vajaduse korral kasutada Lode tuulepargis. Kõiki KMH käigus hinnatud jaamu saab seadistada konkreetsetele töörežiimidele, et vähendada müraheidet, varjutust ja mõju nahkhiirtele (bat mode). Kõik TEJ-de tootjad pakuvad oma jaamadele seadmeid, et tuvastada jää teket ja vähendada selle mõju.
KMH aruandes esitatud teave tuulepargi ehituse kohta põhineb kavandatava tegevuse algataja esitatud teabel ja TEJ-de tootjate ehitustööde tehnilistes andmetes oleval teabel. Ehituse peamised etapid:
1. ehitusdokumentide koostamine ja kooskõlastamine;
2. ehitustööd (ala ettevalmistamine, juurdepääsuteede ja platside rajamine, kuivendussüsteemide ümberkorraldamine, kommunikatsioonide rajamine, TEJ-de vundamentide rajamine, TEJ-de tarnimine, TEJ-de paigaldamine ja ala korrastamine);
3. tuulepargi kasutusele võtmine.
Tuulepargi täpne ehitusplaan töötatakse välja ehitusprojekti raames, kui on teada TEJ-de mudel ning ehitamiseks vajalike materjalide, seadmete ja masinate tarnimise logistika on kooskõlastatud. Pargi rajamiseks on kavandatud umbes 2 aastat.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
11
Juurdepääs kavandatavale Lode tuulepargile ehitamise ja käitamise ajal on kavandatud kohalike riigiteede V176 Sīļi - Eesti piir ja V177 Ķoņi - Lode - Arakste, samuti omavalitsuse maantee Arakste - Bērzi ja RAS „Läti riigimetsad“ teede (Palejas ceļš ja Lapegļu stiga) kaudu (vt aruande joonis 3.5.2). Juurdepääs võiks toimuda ka Eesti poolel olevate teede ja muude isikute omandis olevate teede kaudu, mida praegu kasutatakse juurdepääsuks põllu- ja metsamaakinnistutele.
Ehitusprojekti koostamisel hinnatakse detailselt transporditeid ja töötatakse välja TEJ-de transpordiplaan. Plaanitakse, et TEJ-d võidaks tarnida nende tootmiskohast Paldiski sadamasse, kust need saaks mööda maanteed E67 või E263 tuua Valga-Uuluni ja sealt edasi kavandatud tuulepargi asukohta. Arvestades jaamade üldmõõtmeid, transporditakse neid osade kaupa suuremõõtmeliste veostena. KMH väljatöötaja esitatud teabe kohaselt uuritakse kolme marsruuti. Kõik marsruudid algavad Valga-Uulu (Eesti territoorium) maanteelt nr 6 ja tuuakse plaanitud tegevuse alani Arakste poolt, kusjuures muutub ainult marsruutide keskmine osa (vt aruande joonis 3.5.4). Turbiiniosade transporditeede vabastamiseks tehtavate tööde hindamisel leiti, et Eesti poolel on tööd seotud pigem madalamal asuvate elektriõhuliinide ümberpaigutamise või ajutise demonteerimisega ning olemasoleva teetaristu, näiteks laternate ja liiklusmärkide ajutise demonteerimisega.
Tuuleelektrijaamade tootjatelt saadud teabe kohaselt on TEJ kasutusiga 25 kuni 30 aastat. Hästi hooldatud elektrijaam võib olla ka pikema kasutuseaga, kui elektrijaama toodetud energia realiseerimisest saadav tulu kaalub üles hooldus- ja uuenduskulud. Teiste riikide kogemused näitavad, et tehnoloogia areng ja valdkonna poliitika võivad samuti mõjutada tuulepargi tegelikku kasutusiga. Kasutusea lõppedes tuulepargid demonteeritakse või ehitatakse ümber (repowering). Praegu ei ole võimalik ennustada, milliseid neist võimalustest kasutatakse tuulepargi kavandatud kasutusea lõpus.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
12
4. KESKKONNASEISUNDI KIRJELDUS JA KAVANDATAVA TEGEVUSE KESKKONNAMÕJU HINDAMINE
KMH aruandes esitatakse teave praeguse olukorra kohta ja analüüsitakse järgmisi TEJ ehitamise ja käitamise aspekte:
- müratase (sh müra erinevate sageduste analüüs) (aruande peatükk 4.1); - varjutus (aruande peatükk 4.2); - bioloogiline mitmekesisus – kaitsealad, taimed ja elupaigad, nahkhiired, ornitofauna,
kahepaiksed (aruande peatükid 4.3-4.7); - visuaalne mõju maastikule (aruande peatükk 4.8); - kultuuripärand (aruande peatükk 4.9); - õhukvaliteet (aruande peatükk 4.10); - kliima (aruande peatükk 4.11); - geoloogia ja hüdrogeoloogia, pinnaveevoolud (aruande peatükk 4.12); - jäätmekäitlus (aruande peatükk 4.13); - keskkonnariskid ja hädaolukorrad (aruande peatükk 4.14); - sidesüsteemid (aruande peatükk 4.15); - muud mõjud: elektromagnetvälja mõju ja vibratsioonitase (aruande peatükk 4.17); - sotsiaalmajanduslikud aspektid (peatükk 4.16).
Allpool on esitatud nimetatud keskkonnaaspektide lühikirjeldus (praegune olukord, peamised mõjud ja keskkonnamõju leevendamise meetmed). Täispikkuses hinnangud on esitatud keskkonnamõju hindamise aruande täisversioonis.
4.1. Müra
Välismüra
Selleks et teha kindlaks kõige suurema mürasaastepotentsiaaliga TEJ mudel, st tuvastada potentsiaalselt kõige ebasoodsam olukord, võrreldi omavahel keskkonnamõju hindamise käigus kõigi KMH raames hinnatud TEJ mudelite müratasemeid. Hindamise käigus jõuti järeldusele, et kõige suurem müratase tekiks 166 m kõrgusele masti paigaldatud standardlabadega Vestas V172 - 7.2 puhul, mistõttu on seda mudelit kasutatud Lode tuulepargi läheduses asuvate TEJ-de mürataseme hindamiseks.
Arvutuste tulemuste kohaselt vastab tuumaelektrijaama käitamine nii Lätis kui ka Eestis kehtestatud keskkonnamüra piirväärtustele. Seetõttu ei ole põhjust kehtestada piiranguid ühelegi KMH käigus hinnatud tehnoloogilisele alternatiivile. Mõnes kavandatava tuulepargi läheduses asuvas elamurajoonis võib aga tuulepargi müratase TEJ Vestas standardlabadega mudeli V172 - 7.2. MW paigaldamisel olla kõrgem kui Maailma Terviseorganisatsiooni soovitatud piirnormid TEJ-de müra kohta.
Joonisel 4 on esitatud KMH aruandes hinnatud TEJ mudelite müra võrdlus tegeliku tuule kiiruse kohta päevasel ajal. Üksikasjalik teave suurima arvutatud keskkonnamüra taseme kohta ja müra hajumise kaardid, millel on esitatud päevased ja õhtused müratasemed, on kokkuvõtlikult esitatud KMH aruande peatükis 4.1.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
13
* aerodünaamiliselt täiustatud tiivad
Joonis 4. KMH aruandes hinnatud TEJ mudelite tekitatud müra võrdlus, mis põhineb tegelikel tuulekiirustel ööpäevastel perioodidel.
Kuna alajaama tehniline lahendus määratakse kindlaks ehitusprojekti koostamise käigus ja kavandatava trafoalajaama müraheite omadused ei ole aruande koostamise ajal teada, on keskkonnamõju hindamise käigus arvutatud lubatud müratase alajaama piiril, kasutades andmeid elamupiirkondade kauguse kohta ja nende elamupiirkondade suhtes rakendatavat keskkonnamüra alumist piirmäära, mis on öösiti 45 dB(A). See ei tohi ületada 61 dB(A).
Kuigi praegu ei ole põhjust mõju vältimiseks või vähendamiseks kehtestada kohustuslikke meetmeid, on soovitatav, et kavandatava tuulepargi jaoks mõeldud TEJ mudeli valimisel võetaks arvesse TEJ-de mürataset, ning kui ei ole muid mõjusaid põhjusi valjema jaama valimiseks, tuleks valida ja paigaldada Lode tuuleparki võimalikult väikese müratasemega elektrijaamad. Vaiksemate jaamade valimine võimaldab lähimatele elamupiirkondadele avaldatava müra taset viia lähemale Maailma Terviseorganisatsiooni soovitatud müra piirväärtustele või nende piiresse.
Üksikasjalik teave arvutatud madalsagedusliku müra tasemete kohta on esitatud KMH aruande peatükis 4.1.
Välismüra – piiriülene mõju
Välismüra näitajad, nende rakendamise kord ja hindamismeetodid on kindlaks määratud Eesti Vabariigi keskkonnaministri 21. detsembri 2016 määrusega nr 71 „Välisõhus leviva müra normtasemed ning mürataseme mõõtmise, määramise ja hindamise meetodid“ 4. Eestis rakendatakse liiklus- ja tööstusmüra suhtes erinevaid müra piirväärtusi. Välismüra suhtes rakenduvad:
4 Kättesaadav aadressil: https://www.riigiteataja.ee/akt/121122016027
Päev Õhtu Öö
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
14
- müra piirväärtus – maksimaalne lubatud müratase, mille ületamisega kaasneb märkimisväärne keskkonnakahju ja mille ületamisel tuleb võtta asjakohased müra vähendamise meetmed – rakendatakse olemasoleva ehitusega alade suhtes;
- müra sihtväärtus – maksimaalne lubatud müratase uute hoonetega aladel – kehtib planeeritud elamutega alade kohta.
Nende määruste kohaselt tuleb keskkonnamüra piirväärtusi rakendada omavalitsuse ruumilise planeeringu peamiste maakasutustüüpide suhtes, võttes arvesse elamutega alasid. Olemasolevat teavet hinnates võib järeldada, et kavandatava tegevuse ümbruskonnas asuvad maakohtadesse rajatud üksiktalud ning ka munitsipaalomandis ei ole eraldi planeeritud elamualade rajamist.
Määruste kohaselt rakendatakse kavandatava tegevuse ümbruses elamurajoonide suhtes kehtestatud II kategooria tööstusmüra piirväärtust – haridusasutused, tervishoiu- ja sotsiaalhoolekandeasutused ning elamu- ja rohealad. Elamualade pindalad on määratud kindlaks Eesti Maa-ameti geoportaalis5 toodud topograafiliste andmete kohaselt.
Tabelis 3 on esitatud kokkuvõte tööstuslike müraallikate suhtes rakendatavate müra piirväärtuste kohta.
Tabel 3. Eestis rakendatavad müra piirväärtused – tööstuslike müraallikate müra
Ehitusala kasutamise funktsioon
Müra piirväärtused Müra sihtväärtused
LPäev
(dB(A))
Löö
(dB(A))
LPäev
(dB(A))
Löö
(dB(A))
II kategooria – haridusasutused, tervishoiu- ja sotsiaalhoolekandeasutused, elamualad, rohealad
60 45 50 40
Eesti Vabariigi keskkonnaministri 21. detsembri 2016 määruse nr 71 „Välisõhus leviva müra normtasemed ning mürataseme mõõtmise, määramise ja hindamise meetodid“ kohaselt rakenduvad ehitustööde suhtes välismüra piirväärtused kell 21.00–07.00.
Arvestades seda, et algataja esitatud teabe kohaselt toimuvad ehitustööd peamiselt päevasel ajal, ei ole mürahinnangus kvantitatiivselt hinnatud ehitustööde mõju müratasemetele kavandatava tegevuse ümbruskonnas.
Lätis ja Eestis kehtestatud välismüra piirväärtused kehtivad kõikide tööstusmüra allikate kohta, olenemata nende tegevuse iseloomust. Kuigi ka enamikus teistes Euroopa riikides kasutatakse sarnast põhimõtet, võib müra mõju rahvatervisele oleneda mitte ainult müra kvantitatiivsetest näitajatest, mürast detsibellides, vaid ka müraallika tüübist. Maailma
5 Kättesaadav aadressil: https://geoportaal.maaamet.ee/eng/Spatial-Data/Estonian-Topographic-Database- p305.html
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
15
Terviseorganisatsiooni suuniste järgi on TEJ-de müra piirväärtus 45 dB(A) Lööpäev 6. Kuigi
Maailma Terviseorganisatsiooni piirväärtused on soovitusliku iseloomuga, kasutati selle hinnangu koostamisel kavandatava tuulepargi mõju hindamisel ka soovituslikku piirväärtust.
Eesti keskkonnamüra hindamiseks kasutati järgmisi müraindikaatoreid.
- Päevane müratase – Lpäev, mis iseloomustab ebamugavustunnet päevasel ajal. See on A-korrektsiooniga pikaajaline keskmine müratase (dB(A)), mis iseloomustab aasta keskmist mürataset päevasel ajal. Määramisel võetakse arvesse kõiki päevi (ööpäeva osana) aasta jooksul.
- Öine müratase – Löö, mis iseloomustab mürast põhjustatud unehäireid. See on korrektsiooniga pikaajaline keskmine müratase (dB(A)), mille määramisel võetakse arvesse kõiki öid (ööpäeva osana) aasta jooksul.
- Ööpäevane müratase – Lööpäev, mis kirjeldab üldist keskkonnamürast põhjustatud ebamugavustunnet.
Määruse lisa 1 kohaselt arvestati mürataseme hindamisel ja modelleerimisel, et päeva pikkus on 16 tundi – alates kella 7.00 kuni 23.00 ja öö pikkus on 8 tundi – kell 23.00 kuni 7.00.
Müranäitajat hinnati 2 m kõrgusel maapinnast. Määruste kohaselt on keskkonnamüra piirmäärad kehtestatud aasta keskmiste müratasemete kohta.
Müraindikaatorite väärtused on kaartidel esitatud 5 dB(A) suuruste sammudena.
Eesti Vabariigi õigusaktides on kehtestatud müra piirmäärad, mida rakendatakse tööstuslikest allikatest lähtuva müra suhtes. KMH müra hindamise raames koguti teavet olemasolevate tööstusmüraallikate kohta, et hinnata võimalikku kumulatiivset mõju, ning leiti, et kavandatava tuulepargi läheduses ei ole tööstusmüraallikaid. Kõige olulisemad müraallikad ümbruskonnas on riigimaanteed, mille suhtes kehtivad keskkonnamüra piirnormid, mida rakendatakse liiklusmüra suhtes nii Läti Vabariigi kui ka Eesti Vabariigi õigusaktide alusel. Eespool öeldut silmas pidades ei hinnata liiklusmüra mürahindamises eraldi.
Lode tuulepargi ehitus on kavas lõpetada kahe aasta jooksul. Arvestades seda, et tuuleparki ehitatakse etapiviisi, võib tuulepargi ehitusega seotud müra iseloomustada kui katkendlikku müra. Kavandatava tegevuse algataja esitatud teabe kohaselt on selleks, et mitte häirida elanikkonda öösel, planeeritud teha ehitustöid kavandatava tegevuse piirkonnas peamiselt päevasel ja õhtusel ajal (täpne ehitustööde korralduse plaan lepitakse ehitusametiga kokku ehitusprojekti koostamise käigus). Kuigi suurem osa ehitustöödest kavatsetakse teha nii, et need öösel elanikke ei häiriks, on võimalik, et mõned tööd tehakse lühikese perioodi vältel ka öösel. Näiteks on TEJ paigaldamine võimalik ainult teatud tuuleoludega. Seega, kui TEJ paigaldamine ei ole päevasel ajal sobivate ilmaolude puudumise tõttu võimalik, võidakse seda teha öösel. Tuleb märkida, et öine ehitustööde tegemine on erandlik, mitte üldine praktika tuuleparkide ehitustööde korraldamisel. Eesti Vabariigi keskkonnaministri 21. detsembri 2016 määruse nr 71 „Välisõhus leviva müra normtasemed ning mürataseme mõõtmise, määramise ja hindamise meetodid“ kohaselt rakenduvad ehitustööde suhtes välismüra piirmäärad kell 21.00–7.00. Arvestades seda, et algataja esitatud teabe kohaselt toimuvad ehitustööd
6 Kättesaadav aadressil: https://cdn.who.int/media/docs/default-source/who-compendium-on-health-and- environment/who_compendium_noise_01042022.pdf?sfvrsn=bc371498_3
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
16
peamiselt päevasel ajal, ei ole selles mürahinnangus kvantitatiivselt hinnatud ehitustööde mõju müratasemetele kavandatava tegevuse lähiümbruses.
Keskkonnamõju hindamise käigus hinnatakse võimalikke tehnoloogilisi alternatiive – erinevaid TEJ mudeleid. Võttes arvesse, et tuulepargi projekteerimise alustamisel ja TEJ mudeli valimisel võib see erineda KMH aruandes hinnatud mudelist, on tehnoloogiliste alternatiivide puhul kavas hinnata halvimat võimalikku stsenaariumi, st kõige mürarikkamat jaama, kehtestades vajaduse korral heitkoguste piirmäärad, mis tagavad kavandatava tegevuse vastavuse õigusaktides sätestatud nõuetele, olenemata valitud TEJ mudelist. Kuigi kõik selles hinnangus analüüsitud TEJ-d pakuvad ka spetsiaalseid töörežiime, mis tagavad väiksemad müraheite väärtused, ei ole nende režiimide teostatavust keskkonnamüra kontekstis selles hinnangus hinnatud, kuna kõik tootjate pakutavad režiimid on seotud ka märkimisväärselt väiksema elektrijaama kasuteguriga.
Selleks et teha kindlaks kõige suurema mürasaastega TEJ mudel, st tuvastada potentsiaalselt kõige ebasoodsam olukord, võrreldi KMH käigus omavahel kõigi sellesse hindamisse kaasatud TEJ mudelite müratasemeid.
Erinevate TEJ mudelite mürataseme andmete võrdlus näitab nende sarnast omadust: kui suurenevad tuule kiirus ja TEJ elektritootmise potentsiaal, suureneb ka elektrijaama müratase, kuid kui elektrijaam saavutab oma nimivõimsuse, siis TEJ müratase enam ei suurene. Keskkonnamõju hindamise käigus hinnatud TEJ mudeli tekitatud kogu mürasaaste kogutud teabe põhjal tuule kiiruse kohta kavandatava tegevuse lähiümbruses on esitatud joonisel 4.
Arvutuste tulemuste kohaselt ei ületa standardlabadega TEJ mudeli Vestas V172 - 7,2 MW töötamisel tekitatav müratase üheski asukoha alternatiivis lähedalasuvates elamupiirkondades määruses nr 71 sätestatud keskkonnamüra piirmäärasid. Siiski on oodata, et mõnes kavandatava tuulepargi läheduses asuvas elamupiirkonnas võib müratase ületada Maailma Terviseorganisatsiooni soovitatavaid piirväärtusi, mis on kehtestatud TEJ-de mürale. Tabelis 8 on esitatud kokkuvõte TEJ-de arvutatud suurimate müratasemete kohta. Joonistel 5–10 esitatud välismüra hajuvuskaartidel on kujutatud Eesti õigusaktide kohased müra väärtused.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
17
Joonis 5. TEJ Vestas V172 - 7.2. MW tekitatav müratase kavandatava tegevuse ala läheduses keskkonnamüra näitaja Lpäev korral (peamine alternatiiv Eesti õigusaktide kohaselt)
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
TEJ asukoht
Elamud
2 km ala TEJ ümber
Läti-Eesti piir
Külad
Müratase Lpäev, dB(A)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
18
Joonis 6. TEJ Vestas V172 - 7.2. MW tekitatav müratase kavandatava tegevuse ala
läheduses keskkonnamüra näitaja Löö korral (peamine alternatiiv Eesti õigusaktide
kohaselt)
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
TEJ asukoht
Elamud
2 km ala TEJ ümber
Läti-Eesti piir
Külad
Müratase Löö, dB(A)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
19
Joonis 7. TEJ Vestas V172 - 7.2. MW tekitatav müratase kavandatava tegevuse ala läheduses keskkonnamüra näitaja Lööpäev korral (peamine alternatiiv Eesti õigusaktide kohaselt)
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
TEJ asukoht
Elamud
2 km ala TEJ ümber
Läti-Eesti piir
Külad
Müratase Lööpäev, dB(A)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
20
Joonis 8. TEJ Vestas V172 - 7.2. MW tekitatav müratase kavandatava tegevuse ala läheduses keskkonnamüra näitaja Lpäev korral (TEJ 16A ja 17A-ga Eesti õigusaktide kohaselt)
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
TEJ asukoht
Elamud
2 km ala TEJ ümber
Läti-Eesti piir
Külad
Müratase Lpäev, dB(A)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
21
Joonis 9. TEJ Vestas V172 - 7.2. MW tekitatav müratase kavandatava tegevuse ala läheduses keskkonnamüra näitaja Löö korral (koos TEJ 16A ja 17A-ga Eesti õigusaktide kohaselt)
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
TEJ asukoht
Elamud
2 km ala TEJ ümber
Läti-Eesti piir
Külad
Müratase Löö, dB(A)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
22
Joonis 10. TEJ Vestas V172 - 7.2. MW tekitatav müratase kavandatava tegevuse ala läheduses keskkonnamüra näitaja Lööpäev korral (koos TEJ 16A ja 17A-ga Eesti õigusaktide kohaselt)
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
TEJ asukoht
Elamud
2 km ala TEJ ümber
Läti-Eesti piir
Külad
Müratase Lööpäev, dB(A)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
23
Tabel 8. Standardlabadega Vestas V172-7.2 TEJ mudeli suurim arvutatud müratase elamurajoonides (Eesti territooriumil – arvutatud 2 m kõrgusel)
Elamu katastritunnus
Elamu katastritunnus
Elamuala nimi
AT – müratase ehituse alal
F – müratase 2 m kaugusel fassaadist
Müratase, dB(A)
Müra piirväärtus TEJ tekitatav müra
peamine alternatiiv
TEJ tekitatav müra
koos 16A ja 17A-ga
Lpäev Löö Lpäev Löö Lööpäev Lpäev Löö Lööpäev
117000362 Järve (AT)
60 45
30 31 37 29 30 36
120536586 Kabaku (AT) 29 30 36 27 28 34
117000020 Kapteni (AT) 28 29 35 27 28 34
117000469 Kase (AT) 33 34 40 33 34 40
117000021 Kaupluse (AT) 29 29 36 37 28 34
117007323 Keskla (AT) 31 32 38 32 33 39
117000845 Kivioja (AT) 30 31 37 29 30 36
117000042 Leisi (AT) 30 31 37 30 31 37
112027098 Lillemaa (AT) 40 40 47 38 39 45
117000168 Matti (AT) 29 30 36 29 30 36
117000611 Merevahi (AT) 34 35 41 35 35 42
117000540 Mitimaja (AT) 33 33 40 33 34 40
117000220 Nahksepa (AT) 30 31 37 31 32 38
117006444 Pilvemäe (AT) 32 32 39 32 33 39
117006486 Puka (AT) 30 31 37 30 31 37
117000419 Puusepa (AT) 31 31 38 32 32 38
117000145 Roosimäe (AT) 31 31 38 30 31 37
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi ehitamise keskkonnamõju hindamise aruande kokkuvõte piiriülese mõju kontekstis
Versioon avalikuks aruteluks
24
Elamu katastritunnus
Elamu katastritunnus
Elamuala nimi
AT – müratase ehituse alal
F – müratase 2 m kaugusel fassaadist
Müratase, dB(A)
Müra piirväärtus TEJ tekitatav müra
peamine alternatiiv
TEJ tekitatav müra
koos 16A ja 17A-ga
Lpäev Löö Lpäev Löö Lööpäev Lpäev Löö Lööpäev
117000295 Rulli (AT) 32 33 39 33 33 40
120599962 Ruuna (AT) 32 33 39 33 33 40
117000880 Tammiku (AT) 32 32 39 32 33 39
120535522 Ületee (AT) 31 32 38 32 33 39
117000518 Uue-Kogra (AT) 28 29 35 27 28 34
117000150 Uus-Liiva (AT) 29 30 36 29 30 36
112031439 Vesiveski (AT) 31 32 38 30 31 37
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
25
Madalsageduslik müra
Madalsageduslikud helid levivad kaugemale kui kõrgsageduslikud helid, mis tuleneb atmosfääri helilaineid summutavast mõjust. Kuigi Lätis ja Eestis puuduvad õigusaktid, millega kehtestatakse konkreetsed madalsagedusliku müra piirväärtused ja hindamiskord, on hinnangu andmisel tuginetud Taanis kehtivatele piirväärtustele, mis kehtivad tüüpiliste elamute kohta.
Madalsagedusliku müra tasemed arvutati kokku 47 elamule, mis asuvad 2 km raadiuses potentsiaalsetest TEJ rajamise kohtadest, sealhulgas Eestis asuvatest elamutest. Arvutuste tulemuste kohaselt ei põhjusta keskkonnamõju hindamise käigus hinnatud TEJ mudelite kasutamine 20 dB(A) piirväärtuse ületamist tuulepargi läheduses asuvates elamutes.
Teave tuuleelektrijaamadest tuleneva madalsagedusliku müra taseme kohta tuulepargi läheduses asuvate elamute juures on kokkuvõtlikult esitatud tabelis 9 peamise alternatiivi kohta ja tabelis 10 alternatiivi kohta, mis hõlmab TEJ 16A ja 17A ehitamist.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
26
Tabel 9. TEJ tekitatud madalsagedusliku müra tase (dB(A)) elamutes tuulepargi läheduses Eesti territooriumil
Ehituse katastritunn us
Nimi
Vestas V172 - 7.2 (ST)
Vestas V172 - 7.2 (STE)
Vestas V162 - 6.2 (ST)
Vestas V162 - 6.2 (STE)
Siemens Gamesa
SG170-6.6 (ST)
Nordex N163 - 5.7 (ST)
Nordex N163 - 5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
120536586 Kabaku 10,8 10,7 9,7 10,1 7,4 7,8 6,1 6,3 6,6 6,9 8,9 9,6 8,3 9,0
117000020 Kapteni 10,1 10,1 9,1 9,4 6,7 7,1 5,4 5,7 5,9 6,3 8,3 8,9 7,6 8,3
117000469 Kase 13,5 13,4 12,4 12,8 10,1 10,5 8,8 9,0 9,3 9,5 11,6 12,2 10,9 11,6
117000021 Kaupluse 10,4 10,3 9,4 9,7 7,0 7,4 5,7 6,0 6,2 6,5 8,5 9,2 7,9 8,6
117007323 Keskla 12,9 12,8 11,8 12,2 9,5 9,9 8,2 8,4 8,7 9,0 11,0 11,6 10,3 11,0
117000845 Kivioja 11,0 10,9 9,9 10,3 7,6 8,0 6,3 6,5 6,8 7,1 9,1 9,8 8,4 9,2
117000042 Leisi 11,9 11,8 10,8 11,2 8,5 8,9 7,2 7,4 7,7 8,0 10,0 10,7 9,3 10,1
112027098 Lillemaa 17,1 17,1 16,0 16,4 13,7 14,1 12,4 12,6 12,8 13,0 15,1 15,7 14,4 15,1
117000168 Matti 12,3 12,3 11,3 11,7 9,0 9,3 7,7 7,9 8,1 8,4 10,5 11,1 9,8 10,5
117000611 Merevahi 13,7 13,7 12,6 13 10,3 10,7 9,0 9,3 9,5 9,8 11,8 12,4 11,1 11,8
117000540 Mitimaja 13,4 13,3 12,3 12,7 10,0 10,4 8,7 8,9 9,2 9,4 11,5 12,1 10,8 11,5
117000220 Nahksepa 12,4 12,4 11,4 11,7 9,0 9,4 7,7 8 8,2 8,5 10,5 11,2 9,9 10,6
117006444 Pilvemäe 12,9 12,9 11,9 12,2 9,6 9,9 8,2 8,5 8,7 9,0 11,0 11,7 10,4 11,1
117006486 Puka 11,9 11,8 10,8 11,2 8,5 8,9 7,2 7,4 7,7 8,0 10,0 10,7 9,4 10,1
117000419 Puusepa 12,7 12,7 11,6 12 9,3 9,7 8,0 8,2 8,5 8,8 10,8 11,5 10,1 10,9
117000145 Roosimäe 11,8 11,7 10,7 11,1 8,4 8,8 7,1 7,3 7,6 7,9 9,9 10,6 9,2 10
117000295 Rulli 13,0 12,9 11,9 12,3 9,6 10,0 8,3 8,5 8,8 9,1 11,1 11,7 10,4 11,1
120599962 Ruuna 13,4 13,3 12,3 12,7 10,0 10,4 8,7 8,9 9,2 9,4 11,5 12,1 10,8 11,5
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
27
Ehituse katastritunn us
Nimi
Vestas V172 - 7.2 (ST)
Vestas V172 - 7.2 (STE)
Vestas V162 - 6.2 (ST)
Vestas V162 - 6.2 (STE)
Siemens Gamesa
SG170-6.6 (ST)
Nordex N163 - 5.7 (ST)
Nordex N163 - 5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
117000880 Tammiku 12,9 12,9 11,8 12,2 9,5 9,9 8,2 8,5 8,7 9,0 11,0 11,7 10,3 11,1
120535522 Ületee 12,9 12,9 11,9 12,3 9,6 10 8,3 8,5 8,7 9,0 11,0 11,7 10,4 11,1
117000518 Uue- Kogra 10,2 10,2 9,2 9,6 6,9 7,2 5,6 5,8 6,1 6,4 8,4 9,1 7,7 8,5
117000150 Uus-Liiva 12,4 12,3 11,3 11,7 9,0 9,4 7,7 7,9 8,2 8,5 10,5 11,2 9,8 10,6
112031439 Vesiveski 11,3 11,3 10,3 10,6 8,0 8,3 6,7 6,9 7,1 7,4 9,4 10,1 8,8 9,5
Tabel 10. TEJ põhjustatud madalsagedusliku müra tase (dB(A)) tuulepargi läheduses asuvates elamutes Eesti territooriumil TEJ 16A ja 17A puhul
Ehituse katastritunn us
Nimi
Vestas V172 - 7.2 (ST)
Vestas V172 - 7.2 (STE)
Vestas V162 - 6.2 (ST)
Vestas V162 - 6.2 (STE)
Siemens Gamesa
SG170-6.6 (ST)
Nordex N163 - 5.7 (ST)
Nordex N163 - 5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
117000362 Järve 10,6 10,6 9,6 10,0 7,3 7,7 6,0 6,2 6,5 6,8 8,8 9,5 8,1 8,8
120536586 Kabaku 10,5 10,5 9,5 9,8 7,1 7,5 5,9 6,1 6,3 6,7 8,7 9,3 8,0 8,7
117000020 Kapteni 9,9 9,8 8,8 9,2 6,5 6,9 5,2 5,4 5,7 6,0 8,0 8,7 7,4 8,1
117000021 Kaupluse 10,1 10,1 9,1 9,5 6,8 7,2 5,5 5,7 6,0 6,3 8,3 9,0 7,7 8,4
117007323 Keskla 13,1 13,0 12,0 12,4 9,7 10,1 8,4 8,6 8,9 9,2 11,2 11,8 10,5 11,2
117000845 Kivioja 10,7 10,7 9,7 10,1 7,4 7,7 6,1 6,3 6,5 6,8 8,9 9,5 8,2 8,9
117000042 Leisi 11,8 11,8 10,8 11,2 8,5 8,9 7,2 7,4 7,7 8 10,0 10,7 9,3 10,0
112027098 Lillemaa 16,2 16,1 15,1 15,4 12,8 13,2 11,5 11,7 11,9 12,1 14,2 14,8 13,5 14,2
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
28
Ehituse katastritunn us
Nimi
Vestas V172 - 7.2 (ST)
Vestas V172 - 7.2 (STE)
Vestas V162 - 6.2 (ST)
Vestas V162 - 6.2 (STE)
Siemens Gamesa
SG170-6.6 (ST)
Nordex N163 - 5.7 (ST)
Nordex N163 - 5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
117000168 Matti 12,3 12,3 11,2 11,6 8,9 9,3 7,6 7,8 8,1 8,4 10,4 11,1 9,8 10,5
117000611 Merevahi 14,0 13,9 12,9 13,3 10,6 11 9,3 9,5 9,7 10,0 12 12,7 11,4 12,1
117000540 Mitimaja 13,5 13,5 12,5 12,9 10,2 10,6 8,9 9,1 9,3 9,6 11,6 12,3 11,0 11,7
117000220 Nahksepa 12,6 12,6 11,6 11,9 9,3 9,6 8,0 8,2 8,4 8,7 10,7 11,4 10,1 10,8
117006444 Pilvemäe 13,1 13,1 12 12,4 9,7 10,1 8,4 8,6 8,9 9,2 11,2 11,9 10,5 11,2
117006486 Puka 11,9 11,8 10,8 11,2 8,5 8,9 7,2 7,4 7,7 8,0 10,0 10,7 9,3 10,1
117000419 Puusepa 12,9 12,9 11,9 12,2 9,6 9,9 8,2 8,5 8,7 9,0 11,0 11,7 10,4 11,1
117000145 Roosimäe 11,5 11,5 10,4 10,8 8,1 8,5 6,8 7,1 7,3 7,6 9,6 10,3 9,0 9,7
117000295 Rulli 13,1 13,1 12,1 12,5 9,8 10,2 8,5 8,7 8,9 9,2 11,2 11,9 10,6 11,3
120599962 Ruuna 13,3 13,3 12,3 12,6 10,0 10,3 8,7 8,9 9,1 9,4 11,4 12,1 10,8 11,5
117000880 Tammiku 13,1 13,0 12,0 12,4 9,7 10,1 8,4 8,6 8,9 9,2 11,2 11,8 10,5 11,2
120535522 Ületee 13,2 13,1 12,1 12,5 9,8 10,2 8,5 8,7 9,0 9,2 11,3 11,9 10,6 11,3
117000518 Uue-Kogra 10,0 9,9 9,0 9,3 6,6 7,0 5,3 5,6 5,8 6,2 8,2 8,8 7,5 8,2
117000150 Uus-Liiva 12,3 12,3 11,3 11,7 9,0 9,4 7,7 7,9 8,2 8,5 10,5 11,1 9,8 10,5
112031439 Vesiveski 11,1 11,1 10,1 10,4 7,7 8,1 6,4 6,7 6,9 7,2 9,2 9,9 8,6 9,3
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
29
Keskkonnamüra hindamisel jõuti järeldusele, et ei ole põhjust kehtestada piiranguid ühelegi KMH käigus hinnatud tehnoloogilisele alternatiivile, sest arvutuste tulemuste kohaselt vastab nende käitamine nii Lätis kui ka Eestis kehtestatud keskkonnamüra piirväärtustele. Mõnes kavandatava tuulepargi läheduses asuvas elamurajoonis võib TEJ Vestas standardlabadega mudeli V172 - 7.2. MW valimisel tuulepargi müratase olla kõrgem kui Maailma Terviseorganisatsiooni soovitatud piirväärtused TEJ-de tekitatud mürale. Rahvatervise kaitse seisukohast on parem tehnoloogiline alternatiiv valida selline jaama mudel, mille keskkonnamüra tase on madalam, mis viiks TEJ tekitatud müra mõju taseme lähemale Maailma Terviseorganisatsiooni soovitatud piirväärtustele või nende piiridesse.
Madalsagedusliku keskkonnamüra hindamisel jõuti järeldusele, et ei ole põhjust kehtestada piiranguid ühelegi KMH käigus hinnatud tehnoloogilisele alternatiivile, sest arvutuste tulemuste kohaselt ei ületataks nende kasutamise tulemusel läheduses asuvates elamutes 20 dB(a) piirväärtust. Rahvatervise kaitse seisukohalt peetakse madalama madalsagedusliku müra tasemega jaama mudeli valimist paremaks tehnoloogiliseks alternatiiviks.
Samuti tuleks rõhutada, et turul on saadaval ka selliseid TEJ mudeleid, mille müratase oleks madalam, ja et kavandatava tegevuse algataja võib vabalt valida ka selles aruandes hindamata jäänud TEJ mudeli. Sellisel juhul tuleb ehitusprojekti koostamise käigus tõendada, et valitud tehnoloogiline alternatiiv tagab, et madalsagedusliku müra tase elamutes ei ületa 20 dB(A) piirmäära.
4.2. Varjutusefekt
Üks olulisemaid mõjusid rahvatervisele, mida analüüsitakse, kui hinnatakse TEJ-de mõju rahvatervisele ja planeeritakse tuuleparkide rajamist, on TEJ-de põhjustatud varjutus. Varjutus (ingl shadow flickering) on tingitud rootori labade liikumisest, kui need varjavad perioodiliselt päikest ning tekitavad maapinnale ja eri objektidele liikuvaid varje.
Varjutus on märgatav ainult päikesepaistelistel ajal, kadudes pilves ilmaga.
Joonis 11. Varjutusefekti tsooni skemaatiline kujutamine
Tuuleparkide planeerimisel tuleks hinnata varjutuse mõju. Iirimaa elamumajanduse, kohalike omavalitsuste ja kultuuripärandi asutuse (Department of Housing, Local Government and
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
30
Heritage) väljatöötatud suuniste kohaselt7, kui turbiini ja vastuvõtja (nt elumaja) vaheline kaugus on suurem kui umbes 500 meetrit, on varjutusefekt tavaliselt täheldatav ainult päikesetõusu või -loojangu ajal, kui turbiini vari on kõige pikem. Kui vahekaugus on suurem kui 10 rootori läbimõõtu, on varjutuse tõenäosus väike.
Varjutusefekt mõjutab peamiselt siseruumides viibijaid. Selle põhjuseks on see, et päikesevalguse, mis piiratult ehk fookustatult jõuab maja aknasse ja valgustab ruumi, katkestab tuuleturbiini laba vari, tekitades n-ö diskoefekti. Õues tuleb valgus inimeseni palju vähem fookustatud allikast kui suletud ruumi aken, seega on varjutusefekt õues vähem häiriv. Seetõttu hinnatakse varjutusefekti mõju tavaliselt tuuleparkide läheduses asuvate elamute puhul.
TEJ-de põhjustatud varjutusefekti saab täpselt prognoosida, kasutades spetsiaalset programmi, mis arvutab varjutusefekti ajastust, võttes arvesse kasutusaega, tuulesuundi ja igakuise päikesepaiste tõenäosust. Vajaduse korral saab varjutusefekti piirata, peatades jaama automaatselt perioodidel, kui see võib mõnel alal varjutust põhjustada.
Lätis ja Eestis puuduvad praegu õigusaktid või suunised, mis sätestaksid, kuidas tuleks varjutuse mõju hinnata ja seda piirata. Teistes ELi riikides on varjutusega kokkupuute piirmäärad enamasti sätestatud pigem suunistes kui õigusaktides. Selle põhjuseks on see, et varjutuse mõju teadvustatakse ja see määratakse häirivaks, kuigi puuduvad teaduslikud tõendid varjutuse mõju kohta rahvatervisele.
Analüüsides teiste riikide TEJ-de ehitust ja mõju hindamist käsitlevaid regulatsioone, tehti kindlaks kõige sagedamini rakendatavad varjutuse mõju piirväärtused:
- mitte üle 30 varjutustunni aastas, mis on arvutatud halvima stsenaariumi meetodit kasutades;
- mitte üle 10 varjutustunni aastas, kui see arvutatakse realistliku stsenaariumi alusel (Saksamaal, Belgias ja Rootsis on soovitatav väärtus mitte üle 8 tunni aastas);
- mitte üle 30 minuti päevas mõlema hindamisstsenaariumi korral; - vältida varjutussagedust üle 3 Hz.
Varjutusefekti mõju arvutamise tulemused näitavad, et varjutusefekti mõjuaeg võib olenevalt TEJ mudeli alternatiivist realistliku stsenaariumi korral olla suurem Saksamaa suunistes esitatud piirväärtusest 8 h aastas kuni 9 elamupiirkonnas. Halvima stsenaariumi korral võib varjutusefekti mõjuaeg olla suurem teisest nimetatud piirväärtusest 30 h aastas kuni 11 elamupiirkonnas. Ühtlasi tuvastati, et varjutusefekti mõjuala kaardid on esitatud joonistel 12– 15. Iga TEJ mudeli varjutusefekti mõjuaeg elamupiirkondades on kokkuvõtlikult esitatud keskkonnamõju hindamise aruande 4. lisas.
Arvutuste tulemused näitavad, et olenemata valitud TEJ mudelist võib varjutusefekt põhjustada kavandatava tegevuskoha läheduses asuvates elamupiirkondades häiringuid, mis ületavad soovitatud piirmäärasid. Ainus tehniline lahendus varjutusefekti kestuse vähendamiseks on peatada varjutust põhjustavate jaamade töö perioodidel, kui need elamupiirkondades tõenäoliselt varjutust põhjustavad.
7 Wind Energy Development Guidelines for Planning Authorities, 2006. Kättesaadav aadressil: https://www.gov.ie/en/publication/f449e-wind-energy-development-guidelines-2006/
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
31
Varjutusefekt – piiriülene mõju
Varjutusefekti mõjuaeg on arvutatud, määrates Eesti elamupiirkonnad Eesti Maa-ameti geoportaalis8 toodud topograafiliste andmete alusel. Arvutusmudelis on vastuvõtjateks arvatud kõik elamud, mis asuvad kuni 3 km kaugusel kavandatavatest tuuleelektrijaamadest.
TEJ tekitatud varjutusefekti mõjuaeg oleneb mitmest tegurist:
- jaama kõrgus;
- rootori läbimõõt;
- tuuleolud (jaama töörežiim);
- päikese kõrgus horisondi kohal aasta ja ööpäeva arvestuses.
Mõju on hinnatud kõigi tabelis 2 loetletud TEJ mudelite (Siemens Gamesa SG170, Vestas V162, Vestas V170, Nordex N163) kohta, eeldades, et need ehitatakse halvima stsenaariumi meetodi kohaselt tabelis nimetatud kõrgeima olemasoleva mastiga. Praeguse hinnangu puhul hinnatakse varjutusefekti mõjuaega, kasutades teistes riikides rakendatavaid eespool kirjeldatud varjutusefekti piirväärtuseid, mis arvutatakse realistliku ajastsenaariumi alusel, kasutades väikseimat piirväärtust, st 8 tundi aastas.
Halvima stsenaariumi meetodi tulemuste kohaselt (eeldusel, et päike paistab pidevalt ja on alati risti pidevalt liikuvate rootorilabadega) võivad uuringuala äärsetest tuuleturbiinidest ligikaudu 1,5–2 km raadiuses asuvad elamupiirkonnad ületada eespool nimetatud suunisväärtusi (30 varjutustundi aastas). Eelnimetatust suuremate kauguste korral ei ole oodata varjutusefekti piirväärtuste ületamist. Vahemaa vähenedes suureneb aga iga saja meetriga võimalus ületada suunistes esitatud piirmäärasid.
Hinnates varjutusefekti mõju arvutamise tulemusi, siis halvima stsenaariumi meetodi korral jääb varjutuse mõjuaeg ühe TEJ kohta vahemikku 8–220 tundi aastas ja realistliku stsenaariumi meetodi korral jääb see vahemikku 30 min kuni 50 tundi aastas, olenevalt valitud jaamamudelist.
Maksimaalsed võimalikud varjutusefekti piirväärtuse ületamise ajad elamupiirkondades on koondatud tabelisse 11, kus on esitatud kõigi hinnatud TEJ mudelite maksimaalne varjutusefekti mõjuaeg. Tuleb märkida, et Nordex N163 varjutusefekti mõjuaeg elamupiirkondadele on väiksem kui teistel hinnatud TEJ mudelitel, samas kui hinnangu järgi suurim kumulatiivne varjutuse mõjuaeg aastas (kasutades realistliku ja halvima stsenaariumi meetodit) elamupiirkondadele võib tuleneda Siemens Gamesa SG170 ja Vestas V172 kasutamisest. Joonistel 12–15 on kujutatud varjutusefekti ajastuse arvutamise tulemused iga aruandes käsitletud TEJ mudeli puhul, mis on saadud halvima stsenaariumi arvutusmeetodit kasutades.
8 Kättesaadav aadressil: https://geoportaal.maaamet.ee/eng/Spatial-Data/Estonian-Topographic-Database- p305.html
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
32
Joonis 12. Varjutusefekti mõjualad, kasutades Siemens Gamesa SG170 jaama
Kaart on seotud Läti koordinaatsüsteemiga LKS-92. Põhjana on kasutatud Läti ruumiandmete infoagentuuri topograafilist kaarti mõõtkavas 1 : 50 000.
Tuuleelektrijaamade paigutus
Legend
Varjutuse mõjuaeg (h/aastas)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
33
Joonis 13. Varjutusefekti mõjualad, kasutades Vestas V162 jaama
Kaart on seotud Läti koordinaatsüsteemiga LKS-92. Põhjana on kasutatud Läti ruumiandmete infoagentuuri topograafilist kaarti mõõtkavas 1 : 50 000.
Tuuleelektrijaamade paigutus
Legend
Varjutuse mõjuaeg (h/aastas)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
34
Joonis 14. Varjutusefekti mõjualad, kasutades Vestas V172 jaama
Kaart on seotud Läti koordinaatsüsteemiga LKS-92. Põhjana on kasutatud Läti ruumiandmete infoagentuuri topograafilist kaarti mõõtkavas 1 : 50 000.
Tuuleelektrijaamade paigutus
Legend
Varjutuse mõjuaeg (h/aastas)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
35
Joonis 15. Varjutusefekti mõjualad, kasutades Nordex N163 jaama
Kaart on seotud Läti koordinaatsüsteemiga LKS-92. Põhjana on kasutatud Läti ruumiandmete infoagentuuri topograafilist kaarti mõõtkavas 1 : 50 000.
Tuuleelektrijaamade paigutus
Legend
Varjutuse mõjuaeg (h/aastas)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
36
Tabel 11. Elamupiirkonnad, kus Eesti territooriumil prognoositakse varjutusefekti mõjuaja piirväärtuste ületamist, näidates ära suurima võimaliku ületatud piirväärtuse
Elukoha nimi
Maksimaalne arvutatud varjutusefekti aeg (hh:mm)
Kõige halvema stsenaariumi meetod Realistliku stsenaariumi
meetod
h/aastas h/päevas h/aastas
Ruuna ≤ 31:34 ≤ 10:39
Lillemaa ≤ 55:18 ≤ 0:45
Sooaru-Ennu ≤36:08
Aruandes hinnati ka jaamade nr L_16 ja L_17 asukoha alternatiive: nr L_16A ja L_17A. Suurimad võimalikud ületatud varjutusefekti mõjuaja piirväärtused elamupiirkondades, hinnates kahe jaama asukoha alternatiivi, on kokkuvõtlikult esitatud tabelis 12, kus on esitatud maksimaalne varjutusefekti aeg kõigi hinnatud TEJ mudelite puhul.
Tabel 12. Elamupiirkonnad Eesti territooriumil, kus on asukoha alternatiivide L_16A ja L_17A rakendamise korral oodata varjutusefekti mõjuaja piirväärtuste ületamist, näidates ära suurima võimaliku ületatud väärtuse.
Elukoha nimi
Maksimaalne arvutatud varjutusefekti aeg (hh:mm)
Kõige halvema stsenaariumi meetod Realistliku stsenaariumi
meetod
h aastas h/päevas h aastas
Ruuna ≤ 31:34 ≤ 10:39
Lillemaa ≤ 48:52 ≤ 0:45
Sooaru-Ennu ≤36:08
Varjutusefekti mõju arvutamise tulemused näitavad, et varjutusefekti mõjuaeg võib ületada Saksamaa suunistes olevat piirmäära 8 h aastas realistliku stsenaariumi puhul ning piirmäära 30 h aastas kõige halvema stsenaariumi arvutamisel kuni 3 elamupiirkonna puhul Eestis olenevalt TEJ mudeli alternatiivist.
Kõigi selle KMH raames hinnatud TEJ-de tootjad varustavad oma jaamad töörežiimidega, mis lülitavad TEJ-d teatud aegadel automaatselt välja. Neid saab seadistada nii teoreetilise kui ka tegeliku päikesepaistelise aja alusel. Teoreetilisel päikesepaistelisel ajal põhinev väljalülitusrežiim on tehnoloogiliselt kõige lihtsam lahendus ja selle rakendamine ei nõua lisaseadmeid. See lahendus hõlmab kindlate TEJ-de väljalülitamist perioodidel, millal nende töö võib teoreetiliselt põhjustada varjutust, olenemata sellest, kas nende peatamise ajal päike paistab.
See lahendus hõlmab kindlate TEJ-de väljalülitamist perioodidel, millal nende töö võib teoreetiliselt põhjustada varjutust, olenemata sellest, kas nende peatamise ajal päike paistab. Selle režiimi seadistamiseks kasutatakse kõige halvema stsenaariumi meetodit varjutuse ajalise mõju arvutamiseks. Tegelikul päikesepaistel põhinev väljalülitusrežiim on tehnoloogiliselt keerukam lahendus, mis hõlmab teatavate TEJ-de väljalülitamist ainult nende perioodidel, kui paistab päike ja nende tegevus võib põhjustada varjutust. Selle režiimi
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
37
kasutamiseks peavad tuulepargis olema seadmed, mis registreerivad päikesepaistelise aja. Kõik selle KMH käigus hinnatud TEJ-de tootjad pakuvad ka nende seadmete paigaldamist.
Kasutades mõnda eespool nimetatud režiimidest, on võimalik vähendada ja kõrvaldada TEJ varjutamise negatiivset mõju. Lode tuuleparki soovitatakse käitada nii, et TEJ varjutamise mõjuaeg elamutes ja avalikes kohtades ei ületaks järgmisi varjutamisefekti mõjuaja piirmäärasid:
- 30 varjutustundi aastas, kui need arvutatakse halvima stsenaariumi meetodi abil;
- 8 varjutustundi aastas, kui need arvutatakse realistliku stsenaariumi alusel;
- 30 minutit päevas mõlema hindamisstsenaariumi korral.
Praeguses etapis ei ole veel kindlaks määratud rajatavate TEJ-de mudelit ega mastide kõrgust ning nende asukoht võib projekteerimise käigus täpsustuda. Kui valitud lahendus erineb KMH aruandes hinnatud lahendustest, tuleks tuulepargi ehituse käigus arvutada ümber varjutusefekti mõjuaeg, määrates kindlaks mõjutatud elamupiirkonnad ja nähes ette sobiva jaamade töö seiskamise režiimi.
4.3. Bioloogiline mitmekesisus – taimed ja elupaigad, erikaitsealad
Keskkonnamõju hindamise raames hinnatakse kavandatud tuuleparkide, uute juurdepääsuteede, elektriülekande taristu ja trafoalajaama ehitamise mõju kaitstavatele loodusväärtustele. Teave Lode tuulepargi piirkonnas leiduvate haruldaste ja eriti kaitsealuste liikide asukohtade kohta on kokkuvõtlikult esitatud joonistel 16 ja 17.
Erikaitsealad
Uurimisala ja kavandatava tegevuse asukoht on eriliselt kaitstud loodusterritooriumil – Põhja- Vidzeme biosfääri kaitsealal, selle neutraalses tsoonis, mis on loodud selleks, et edendada biosfääri kaitseala asulate tasakaalustatud ja kestlikku arengut, välistamata majandustegevuse arengut.
Tegevust ei ole kavandatud riikliku või kohaliku tähtsusega looduskaitsealal (Natura 2000 alal).
Tegevuse elluviimine ei avalda ettenähtavat otsest või kaudset negatiivset mõju metsade või märgalade elupaikade kaitseks loodud erikaitsealadele või mikroreservaatidele. Kavandatava tegevuse elluviimine ei ohusta kaitsealade kaitse-eesmärkide täitmist ega kaitsealade terviklikkust ei kohalikul ega piirkondlikul tasandil.
Põlispuud
Kavandatava tuulepargi piirkonnas ja selle läheduses on tuvastatud mitu põlispuud, samuti võimalikke põlispuid, mis vastavad looduskaitseameti määratud võimalike põlispuude kriteeriumitele9, ja loodusliku mitmekesisuse säilitamise seisukohalt olulisi puid. Eesti territooriumil ei ole kavandatava tuulepargi läheduses täheldatud ühtegi põlispuud.
9 puud, mis on saavutanud vähemalt 90% põlispuu mõõtmetest ministrite kabineti 16. märtsi 2010. aasta määruses nr 264 „Erikaitsealade kaitse ja kasutamise reeglid“ määratud kaitsealuste puude kriteeriumide kohaselt
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
38
Mikroreservaadid
Kavandatava tegevuse piirkonnas ei ole elupaikade või taimeliikide kaitseks moodustatud mikroreservaate.
Kaitstud taimeliigid ja elupaigad
ELi kaitsealuste sooelupaikade hulka kuuluvad 7110 Looduslikud rabad ja 7120 Rikutud, kuid taastumisvõimelised rabad. Kõige sagedamini leidub metsaelupaiku märgades kasvukohtades – 9080* Soo-lehtmetsad ja 91D0* Siirdesoo- ja rabametsad ning 7140 Siirde- ja õõtsiksood, kuid kaitsealuseid rohumaade elupaiku ei ole tuvastatud.
Kavandatud tegevuse läheduses Eestis, ligi 400–800 m kaugusel plaanitud TEJ-de asukohtadest, asub kaks Euroopa tähtsusega kaitsealust elupaika – soo-lehtmetsad ja 2,5 km idas Penuja jõe kaldal Euroopa tähtsusega kaitsealune elupaik Lamminiidud. Need loodusväärtused on kavandatud ehituskohtadest piisavalt kaugel ja neid ei mõjutata otseselt ega kaudselt.
Eestis on 400–800 meetri kaugusel kavandatavast tegevuskohast kolm Euroopa tähtsusega kaitsealust elupaika – metsad ja rohumaad – ning puuduvad erikaitsealuste või haruldaste taimede leiukohad.
Üldiselt võib järeldada, et kavandatav tegevus ei jäta negatiivset mõju ELi tähtsusega elupaikade kaitseolukorrale piirkondlikul või riiklikul tasandil.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
39
Joonis 16. Loodusväärtused Lode tuulepargi alal ja selle lähiümbruses Lode vallas
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
Erikaitseliste liikide leiukoht
Legend
Tuuleelektrijaam Planeeritud kaabli trass Juurdepääsutee Võimalikud transpordimarsruudid
ELi tähtsusega kaitstav elupaik
Anastrophyllum hellerianum
Arthonia leucopellea
Arthonia spadicea
Ceruchus chrysomelinus
Cladonia norvegica
Dactylorhiza baltica
Dactylorhiza fuchsii
Huperzia selago
Jamesoniella autumnalis
Lycopodium annotinum
Odontoschisma denudatum
Orobanche pallidiflora
Platanthera bifolia
Platanthera spp.
Looduslik väärtus
Kaitsealune puu
Orobanche pallidiflora (reticulata) leiuala
mets
soo
rohumaa
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
40
Joonis 17. Loodusväärtused Lode tuulepargi alal ja selle lähiümbruses Ipiķi vallas
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
Erikaitseliste liikide leiukoht
Legend
Planeeritud kaabli trass
Võimalikud transpordimarsruudid
Alajaam
ELi tähtsusega kaitstav elupaik
Lycopodium annotinum
Platanthera chlorantha
Platanthera spp.
Looduslik väärtus
Tuvastatud pesa
mets soo
rohumaa
Mikroreservaat
Mikroreservaadi puhvertsoon
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
41
Kavandatava tegevusega mõjutatavate alade ja seal esinevate loodusväärtuste hindamisel on kindlaks tehtud mõjud, mida on võimalik vältida erinevate meetmete abil, ning mõjud, mida ei ole võimalik vältida või mille vältimine on piiratud, kui kavandatav tegevus viiakse ellu plaanitud ulatuses.
Osa tuulepargi võimalikest mõjudest on juba välditud, kui tegevuse algataja muutis ehitusala ja juurdepääsuteede asukohta pärast seda, kui eksperdid olid esialgu hinnanud mõju liikidele ja elupaikadele.
Ettenähtud mõjude vähendamiseks ja kõrvaldamiseks soovitatakse meetmeid, mis ennetavad kaitstavate liikide elupaikade ja biotoopide pindala vähenemist, või meetmeid, mis kompenseerivad liigiesindajate hävitamist või elupaikade kaotamist juhtudel, kui mõju liikide metapopulatsioonidele on märkimisväärne.
Selleks et võimalikult vähendada mõju ohakasoomuka Orobanche pallidiflora elupaigale, tuleks TEJ L_01 kavandada nii, et mitte häirida tuvastatud leiuala. Ühtlasi on soovitatav rajada muldkeha ilma kuivenduskraavideta, et mitte mõjutada selle hüdroloogilist režiimi.
TEJ L_03 ja L_19 ehitamisel eelistada tehnilisi lahendusi, mis ümbritsevaid alasid vähem kuivatavad.
TEJ L_04 juurdepääsutee ja ehitusala paigutus kavandada nii, et mitte mõjutada potentsiaalselt kaitsealuseid puid.
TEJ L_08 juurdepääsulahenduste kavandamisel ei ole lubatud tee laiendamine, mis mõjutab 9010* ala. Ühtlasi tuleks juurdepääsutee ristmikud olemasoleva teega kavandada nii, et säiliksid teeäärsed tammed.
Masinate liikumine, materjalide paigutamine ja muud ehitusega seotud tegevus ei ole samuti lubatud kaitsealuste liikide leiukohtades, mis on märgitud aruande kaardimaterjalis.
Soovituslik on suurte langenud ja elus puude säilitamine ning TEJ ehitusalal ja uute juurdepääsuteede trassidel olevate suurte kivide (> 4 m3), millel kasvavad samblikud ja samblad, ümberpaigutamine sellisesse kohta, kus kavandatav tegevus neid ei mõjuta, säilitades võimaluse korral kivide asendi ilmakaarte suunas.
Arvestades, et oluline osa kaabelliinist on kavas rajada mööda endist raudteetammi, põllumajandusmaale ja mõnel lõigul teede punase liini piires või punase liinita teede trassi piires, ei ole kavandatud tegevuse raames kavandatud kaabelliinide rajamisega oodata negatiivseid mõjusid, välja arvatud juhul, kui kavandatud kaablitrassi asukoht ristub erikaitsealuste liikide leiupaikadega.
Lisateavet kavandatava meetme negatiivsete mõjude vähendamiseks võetavate leevendusmeetmete kohta vt aruande peatükist 4.3.5 ja tabelist 6.1.2.
Kui ehitusprojekti koostamise käigus täpsustatakse või muudetakse kavandatavate TEJ-de ehitusplatside, juurdepääsuteede või elektri ülekandevõrkude (kaablite) rajamise asukohti, tuleb hinnata uuesti nende võimalikku mõju erikaitsealadele ja kaitstavatele elupaikadele.
Bioloogiline mitmekesisus – piiriülene mõju taimedele, elupaikadele ja erikaitsealadele Eestis
Teave kavandatud tegevusala läheduses olevate erikaitsealade, mikroreservaatide, liikide ja elupaikade leiukohtade kohta Eestis on saadud EELISe andmebaasist (Eesti Looduse Infosüsteem).
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
42
Loodusväärtused Eesti territooriumil
Kavandatud tegevuse läheduses Eestis asub kolm Euroopa tähtsusega elupaika: metsa ja rohumaad. Kõige lähemal on Veelikse soo, mis vastab biotoobile 9080* Soostuvad ja soo- lehtmetsad. Osa sellest soost ulatub Lätti, kus selle nimi on Lucas purvs. Veelikse soo ja elupaik 9080* asuvad TEJ-st L_06 umbes 700 m lõuna pool, L_07-st umbes 700 m edelas, L_08-st umbes 400 m edelas, L_09-st umbes 800 m läänes ja L_10-st umbes 400 m läänes (vt joonis 18).
Lode valla ja Ipiķi valla vahel kulgev kaablitrass on kavandatud Penni ja Veelikse soode vahelisele märgalale. Pärast teed V173 jätkub see läbi metsamaade.
Euroopa kaitsealune elupaik 6430 Niiskuslembesed kõrgrohustud, mida tuntakse ka Purgla soo nime all, asub kavandatavast kaablitrassist umbes 600 m põhja pool Ruukli oja kaldal.
L_15-st umbes 2,5 km ida pool, Penuja jõe kaldal, asub Euroopa kaitsealune ala 6450 Lamminiidud.
Purgla soo ja tee 24203 vahele on märgitud üks oluline metsaelupaik „männi- ja männisegametsad“, mis asub kavandatud kaablitrassist ligikaudu 1,5 km põhjas.
Eesti territooriumil ei ole kavandatava tegevusala läheduses tuvastatud erikaitseliste või haruldaste taimede leiukohti ega põlispuid.
Joonis 18. ELi kaitsealused elupaigad Eestis
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija. Kasutatud EELISe andmeid ((Eesti looduse infosüsteem) 08.06.2024)
Legend
Tuuleelektrijaam
Planeeritud kaabli trass
Juurdepääsutee
Ehitusala
Alajaam
Uurimisala
ELi tähtsusega kaitstav elupaik
soo
mets
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
43
Eeldatav mõju eriti kaitsealustele taimedele ja elupaikadele Eesti territooriumil
• Veelikse soo, mis vastab elupaigale 9080* Soostuvad ja soo-lehtmetsad, on kavandatud TEJ-st ja sellega seotud taristu ehituskohtadest eraldatud põllumajandusmaa ribaga. Otsene mõju soole puudub, kuna see asub kavandatud ehituskohtadest piisavalt kaugel. Kaudne mõju, mis võiks tuleneda soo hüdroloogilise režiimi muutustest, ei ole samuti võimalik, kuna ehitusplatsid on kuivenduskraavidega soost eraldatud ja soo asub madalamas kohas.
• Euroopa kaitstav elupaik 6430 Niiskuslembesed kõrgrohustud, mis on kaartidel märgitud ka kui Purgla soo, asub kavandatavast TEJ ehituskohast kaugel ja sellele mõju ei avaldata. Suhteliselt lähedale (600 m lõuna poole) on kavandatud kaablitrassi rajamine. Samas kaablitrass otseselt elupaika ei mõjuta ning ei saa ka kaudselt mõjutada elupaiga hüdroloogilist režiimi, kuna soo asub madalamas kohas.
• Euroopa kaitsealune elupaik 6450 Lamminiidud ja oluline metsaelupaik „männi- ja männisegametsad“ on kavandatavast ehituspiirkonnast piisavalt kaugel, et kavandatav arendus neile otsest ega kaudset mõju ei avaldaks.
4.4. Bioloogiline mitmekesisus – nahkhiired
Keskkonnamõju hindamise käigus tehti ala põhjalik uuring, kuna loodusandmete haldussüsteemis OZOLS olemasolev teave ja andmed kavandatavas tegevuskohas ja selle ümbruses esinevate nahkhiireliikide kohta hinnati eelmistel aastatel tehtud uuringute tulemuste põhjal ebapiisavaks. Selles on nahkhiiri loendatud ultraheliandurite abil, mis tuvastavad lendavaid nahkhiiri nende kajalokatsiooni kutsungite järgi.
Uurimisalal on registreeritud neli nahkhiireliiki: põhja-nahkhiir Eptesicus nilssonii, suurvidevlane Nyctalus noctula, hõbe-nahkhiir Vespertilio murinus, pruun-suurkõrv Plecotus auritus, samuti üks või mitu muud lendlast perekonnast Myotis, keda selles uuringus ei ole liigiti kindlaks tehtud.
Kõige sagedamini registreeritud liik on põhja-nahkhiir, keda peetakse väga aktiivseks hooajal (juuli ja augusti esimene pool) ja mõnes elupaigas (metsaserv). Siiski peetakse selle liigi üldist aktiivsust pargi alal kogu hooaja jooksul keskmiselt väikeseks. Taustal on täheldatud suurvidevlase tegevust. Mõlemat liiki ähvardab tuuleparkide tõttu suur suremusoht.
Eksperdi arvates oli üldine nahkhiirte aktiivsus uuringualal väike.
Tuuleparkide kõige olulisem mõju nahkhiirte populatsioonidele on nahkhiirte suremus tuuleparkide läheduses. Nagu lindude puhul, on selle suremuse peamised põhjused nahkhiirte kokkupõrked tuulegeneraatorite labadega või barotraumast tulenev surm, kui satutakse pöörleva laba taga oleva hõredama õhu ja vähendatud rõhuga piirkonda.
Planeeritava tuulepargi piirkonnas on liikide registreeritud aktiivsus väiksem kui muudes sama metoodikaga uuritud piirkondades, mis on tõenäoliselt tingitud metsa elupaikade halvenemisest ja teadlikust asukohavalikust, kus on vähe hooneid, mis sobivad nahkhiirte pesitsuspaikadeks. Võimalikud spontaansed nahkhiirte kogunemised toitumispaikades võivad suurendada muidu väikest kokkupõrkeohtu plaanitud rootoritega.
Suurim nahkhiirte suremuse oht on kavandatava tuulepargi korral juulist septembrini, st nahkhiirte hargnemise ja rände ajal. Suve esimesel poolel on nahkhiirte aktiivsus väike.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
44
Metsade ja muude puistute lähedusse kavandatud TEJ-de puhul on nahkhiirte kokkupõrke- /hukkumisoht potentsiaalselt suurem, samas kui avatud maastikule kavandatud TEJ-de korral on nende suremuse oht väiksem.
Alal ei ole võimalik kindlaks teha ühtegi konkreetset TEJ-d või kohta, kus potentsiaalne nahkhiirte suremuse oht oleks nii suur, et see keelaks nende ehitamise, kuid väike nahkhiirte suremus rootorite läheduses on tõenäoline, eriti rände ajal.
Üldiselt võib öelda, et kavandatav tuulepark, nagu ka kõik teised Lätti rajatud tuulepargid, avaldab mõju nahkhiirte populatsioonile. Ei ole tuvastatud ühtegi piiravat tegurit, mis takistaks nahkhiirte kaitse seisukohalt TEJ-de ja nende taristu ehitamist kavandatud aladele.
Kavandatava tuulepargi mõju nahkhiirte populatsioonidele saab leevendada järgmiste meetmetega.
- Tuulepargi rajamine uuritavale alale on lubatud, kui piiratakse nende turbiinide tööd, mis paigaldatakse 200 meetri kaugusele lähimast puistust või veekogust. Esialgu ei ole ulatuslikumad piirangud vajalikud, kuna piirkonnas on nahkhiirte aktiivsus olnud väga väike.
- Töö piiramiseks tuleb tagada tuulegeneraatorite automaatne väljalülitamine või mittetöötamine 1. juunist kuni 30. septembrini päikeseloojangust päikesetõusuni, kui on täidetud järgmised tingimused:
- tuule kiirus tuulegeneraatori torni kõrgusel on 5 m/s või vähem;
- õhutemperatuur on kõrgem kui +6 °C (tavaliselt on temperatuuripiiriks +10 °C, kuid vaatlused Põhja-Läti eri piirkondades näitavad, et nahkhiirte aktiivsus püsib suhteliselt suur ka siis, kui õhutemperatuur on vahemikus +6...+10 °C, eriti sügisel, augusti lõpust septembrini);
- sademete hulk ei ületa 1 mm tunnis.
Arvestades tehtud uuringu määramatust ning vajadust veenduda leevendusmeetmete tõhususes ja otstarbekuses, on nahkhiirte seire kohustuslik kahe aasta jooksul pärast TEJ ehitamist ja tuulepargi tegevuse alustamist.
Bioloogiline mitmekesisus – piiriülene mõju nahkhiirtele Eestis
Praegu ei ole Lätis ega Eestis teisi olemasolevaid või kavandatavaid tuuleparke, mis oleksid Lode tuulepargi potentsiaalsele asukohale lähemal kui 2 km, et võiks tekkida kumulatiivne mõju. Keskkonnamõju hindamise käigus ei tuvastatud ettenähtavat mõju nahkhiirtele Eesti territooriumil.
4.5. Bioloogiline mitmekesisus – ornitofauna
Selleks et hinnata kavandatava tegevuse mõju ornitofaunale, tehti praeguse olukorra teadvustamiseks nii kogutud andmete analüüs kui ka piirkonna uuring. Tuulepargi ja sellega piirnevate alade uuringuid, sealhulgas väliuuringuid, alustati 2023. aasta kevadel ja jätkati 2024. aasta kevadel. Hinnati ka kõiki Euroopa Parlamendi ja nõukogu direktiivi 2009/147/EMÜ (loodusliku linnustiku kaitse kohta) esimeses lisas loetletud liike. Registreeriti ka teisi linnuliike, sealhulgas alast üle lennanud linde (rändlinde).
Uurimisalal registreeriti 31 erikaitsealust ja mikroreservaadi linnuliiki (vt joonis 19).
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
45
Joonis 19. Erikaitsealuste ja mikroreservaatide linnuliikide vaatlused uurimisalal
Tuulepargi rajamine kõnealusele alale võib mõjutada linde peamiselt kolmel viisil: tekitades püsivat mürasaastet ning otsese kokkupõrke- ja hukkumisohu liikidele, kes jahivad õhust või rändavad öösel, ning vähendades märkimisväärselt saadavalolevaid elupaiku. Planeeritud
tuulepargi piirkonnas ja selle ümbruses asuvad prioriteetsed liigid, mis vajavad mõjude tõttu erilist tähelepanu, on väike-konnakotkas, teder, laanepüü, värbkakk, laanerähn ja valgeselg- kirjurähn (vt joonis 20), samuti hiireviu, mis ei ole praegu erikaitsealune liik, kuid on kõige levinum röövlinnuliik kavandatava tuulepargi piirkonnas.
Legend
Mikroreservaadi vaatlused – pesitsejad
Erikaitsealused vaatlused – pesitsejad
Mikroreservaadi ja erikaitsealuste liikide mittepesitsejad TEJ
Olemasolevad teed
Uurimisala
Läti Vabariigi piir
Väike-konnakotka kaitsealused alad
Mikroreservaadi puhvertsoon
Läti geoinfoagentuuri topograafiline kaart 1 : 50 000
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
46
Joonis 20. Prioriteetsete liikide vaatlused ja kaitsealad kavandatava Lode tuulepargi territooriumil
Olukord loodudes olevate lindudega on muutuv. Selle hinnangu koostamisel on võetud arvesse ala praegust seisukorda ja praeguseid lindudele „huvi“ pakkuvaid objekte. Tuulepargi ehitamise ja käitamise ajal muutuvad need tingimused kindlasti, nii et isegi pärast kõigiks tegevusteks loa saamist tuleb arvestada võimalusega, et olulise mõju tuvastamisel võidakse mõju vähendamiseks kehtestada lisameetmeid.
Kavandatava Lode tuulepargi käitamise ajal on peamine negatiivne mõju lindudele mõne liigi elupaiga kadumine ja elupaikade kvaliteedi halvenemine mitmeks aastakümneks. Nende negatiivsete mõjude ulatuse määrab kõige enam jaamade ja montaažiplatside asukoht. Aruanne sisaldab eksperdi soovitusi meetmete kohta, mis leevendavad mõju ornitofaunale.
Võib tunnistada, et kõige olulisem meede riski vähendamiseks on valida jaamade asukohad, mis avaldavad kumulatiivselt võimalikult vähe negatiivset mõju ümbritsevatele linnuliikide elupaikadele ja populatsioonidele. KMH käigus on tuulepargi jaamade paigutust korrigeeritud eksperdi soovituste järgi, sealhulgas loobutud nendest TEJ-dest, mille märkimisväärset negatiivset mõju ei ole võimalik vähendada asjakohaste leevendusmeetmetega ega kompenseerida kompenseerivate meetmetega.
TEJ-de paigutuse ja pargi konfiguratsiooni plaanimise ajal on täielikult toetatud soovitust paigutada TEJ-d lõuna-põhja suunas, püüdes hõivata võimalikult kitsast territooriumi. Samuti kehtib nõue planeerida paigutus nii, et see ei asuks võimalikult suures osas mitte küpsetes metsades, vaid noorendikel või põllumajandusmaadel või neile võimalikult lähedal. Kavandatavad jaamad peavad asuma võimalikult kaugel kohtadest, kus on suur erikaitsealuste ja mikroreservaatide linnuliikide tihedus või kus on nende jaoks sobivad prioriteetsed elupaigad, vältides asukohti, mis soodustavad nende liikide elupaikade killustumist.
Legend
Väike-konnakotkas Valgeselg-kirjurähn Laanepüü Värbkakk Laanerähn Teder Planeeritud jaamad
Olemasolevad teed Uurimisala
Läti Vabariigi piir
Prioriteetsed alad (värbkakk)
Prioriteetsed alad (valgeselg-kirjurähn)
Läti geoinfoagentuuri topograafiline kaart 1 : 50 000
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
47
Tuleb leida tasakaal majandusarengu ja keskkonnahoiu vahel, edendades inimese ja looduse harmoonilist kooselu. Seda põhimõtet rakendatakse nii, et iga arendustegevuse negatiivset keskkonnamõju kas leevendatakse või kompenseeritakse asjakohaste meetmetega. Seda tegevusviisi tuleb järgida ka kavandatava Lode tuulepargi TEJ-de mõju korral.
Meetmed kavandatava tuulepargi mõju vähendamiseks ornitofaunale:
- leevendada liikide elupaikade kadumise ohtu – valida jaamade asukohad, mis avaldavad kõige vähem kumulatiivset negatiivset mõju ümberkaudsetele linnuliikide elupaikadele; elektrivarustuse ja side puhul paigutada maa-alused kaabliliinid piki teid;
- vähendada kokkupõrkeohtu – varustada TEJ-d süsteemidega, mis tuvastavad linnud ja peatavad kokkupõrkeohu korral tuulegeneraatori; mitte piirata aiaga TEJ-d ega trafoalajaama; kasutada masti alaosas umbes 45 meetri ulatuses tumedat värvi; suurendada vähemalt ühe TEJ laba kontrastsust, et see oleks paremini nähtav;
- müra mõju vähendamiseks – üksikute TEJ-de käitamise piiramine perioodidel, kui tuulekiirus on alla 5 m/s; TEJ-de ehitus (sealhulgas raadamine) ja jaamade käitamine (sealhulgas hooldustööd) teha väljaspool pesitsusperioodi; võimalikult vaikse jaamamudeli valimine.
Meetmed öökulliliikidele avaldatava negatiivse mõju kompenseerimiseks:
- hõlmab liikidele sobivate puuride paigutamist kavandatava tuulepargi öökullide ja rähnide prioriteetsetele kaitsealadele ja nende liikide vaatluskohtade ümbrusesse (kus on märgid pesitsemisest) – vähemalt 10 puuri värbkakkudele ja vähemalt 7 puuri händkakkudele, seirates ka nende puuride kasutamist;
- hinnata võimalust säilitada TEJ L_02 ja L_03 ümbruses küpsed metsad või mujal muud samaväärsed metsad, tegemata nendes metsaosades mingisuguseid raieid.
Kokkuvõtet nõutavatest leevendusmeetmetest vt aruande tabelist 6.1.2.
Rändlindude kaitseks ei ole vaja konkreetseid kaitsemeetmeid.
Ornitofauna – piiriülene mõju
Eesti poolel on väike-konnakotka kaitseks loodud mitu kaitseala. Kaks neist, KLO3001938 ja KLO3002473, asuvad 300–850 m kaugusel Läti Vabariigi piirist uurimisala lääneosas. Veel üks ala KLO3001586 asub umbes 1300 m kaugusel piirist, uurimisala põhjaosas. Nende asukoht on esitatud joonisel 21.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
48
Joonis 21. Mikroreservaadid
kavandatava tegevusala ümbruses
Erikaitsealuste ja mikroreservaatide
linnuliikide vaatlused uuringualal on esitatud joonisel 19 ning prioriteetsete liikide vaatlused ja kaitsealad kavandatava Lode tuulepargi territooriumil on esitatud joonisel 20.
Keskkonnamõju hindamise käigus analüüsiti teavet ning hinnati uuringualal ja selle vahetus läheduses esinevaid erikaitsealuseid, ohustatud ja potentsiaalselt enim mõjutatud liike. Alljärgnevalt käsitletakse liike, keda kavandatava tuulepargi rajamine võib mõjutada.
Metsis Tetrao urogallus on paikselt elutsev liik, kes vajab kindlat elupaika. Ta püsib oma territooriumil aasta ringi. Läti põhjaosa piiriala on metsise jaoks oluline ning seal toimub Eesti ja Läti metsisepopulatsioonide omavaheline segunemine.
Uurimisalal ei ole tuvastatud ühtki suurepärast või liigile väga sobivat elupaika ehk männimetsa. Lähiümbruses ei ole ühtegi metsise mikroreservaati ega teadaolevat mängupaika. Uuringualal ei ole teadaolevalt ka metsist vaadeldud. Territooriumi inventuuri käigus metsist visuaalselt ei tuvastatud, küll aga tuvastati selle kohalolu. Tõenäoliselt on tegemist Eestist saabunud linnuga, kes päevasel ajal selles kohas toitub (20 ha suuruses metsatukas), või on tegemist noore linnuga, kes metsisemängus veel täiel määral ei osale. Mängukohta pole tuvastatud, kuid kõige sobivam mängukoht on Eesti Vabariigi territooriumil Veelikse soo (Lätis Lucas purvs) lõunaosas, kus soo serval on laiem puuderiba (100–300 m) soo servas ja sellises mängukohas võib osaleda kuni 2-3 kukke (vt joonist 22).
Legend
Tuuleelektrijaamade paigutus Planeeritud kaabli trass Juurdepääsutee Ehitusala
Alajaam
Väike-konnakotka kaitsealad
Riigipiir
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud digitaalset kaarti JS Baltija.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
49
Joonis 22. Metsise vaatlused, kaitsevööndid ja varjuline ala, kuhu tuleks jaama rajamist vältida
Must-toonekurg Ciconia nigra on rändlind, kes pesitseb Lätis peamiselt vanades ja suuremates metsamassiivides, kus on vooluvee- ja veekogusid. Lähim teadaolev must- toonekure pesa asub Eesti vabariigis, umbes 12 km kaugusel lähimast kavandatavast TEJ L_01- st.
Väike-konnakotkas Clanga pomarina on rändlind, kes naaseb Lätti oma talvituspiirkondadest aprilli alguses. Väike-konnakotka kaitsekava kohaselt toitub see lind Lätis peamiselt põllumajanduslikus ekstensiivkasutuses olevatel maadel, peamiselt niitudel ja karjamaadel (64%), kuid ka jäätmaadel (22%) ja harvemini ka külvatud kultuuriga põllumaadel (9%). Eriti sobivad niidetud niidud ja koristatud põllukultuurid, kus toit on kergesti kättesaadav. Lätis asub 90% väike-konnakotka pesadest 400 m kaugusel metsaservast, rohumaade lähedal.
Kavandatava tuulepargi läheduses on tuvastatud viis kasutuses väike-konnakotka pesa ja nende toitumisalad (vt joonis 23).
Eesti vabariigis leitud väike-konnakotka pesa (ID 680341820) asub 1200 m kaugusel TEJ L_06- st, 2145 m kaugusel L_07-st, 2490 m kaugusel L_03-st, 2680 m kaugusel L_08-st ja 2700 m kaugusel L_05-st.
Eesti vabariigis leitud väike-konnakotka pesa (ID 1115379091) asub 1850 m kaugusel TEJ L_01-st, 2450 m kaugusel L_03-st ja 2670 m kaugusel L_02-st.
Legend
Metsise kohalolu tähelepanekud Metsise võimalik mängukoht
Mänguala kaitsevöönd 1000 m
Mänguala kaitsevöönd 1500 m
Varjuline ala
Planeeritud jaamad
Olemasolevad teed
Uurimisala
Läti Vabariigi piir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
50
Joonis 23. Väike-konnakotka vaatlused, selle elupaiga sobivus ja leitud suured pesad
Herilaseviu Pernis apivorus on rändlind, kes elab erinevat tüüpi metsades. Uuringu käigus leiti alalt üks pesa Eesti Vabariigis väike-merikotka kaitsealal (ID 680341820). Kaugus pesast TEJ L_06-ni on umbes 740 m, L_07-ni umbes 1730 m ja L_03-ni umbes 1970 m. Plaanitud tuulepargi ala, eriti selle äärealasid, võib iseloomustada kui herilaseviu asustatud ja pikka aega sobivat ala, kus herilaseviud elavad umbes mai teisest kümnendist kuni septembri keskpaigani.
Herilaseviu toitumislennud on enamasti madalal, kuid paaritumisaja lennud ja territooriumi valvamine toimuvad rootorite kõrgusel, seega tuleks TEJ-d ehitada võimalikult kaugele kõigist teadaolevatest herilaseviu pesadest.
Legend
Väike-konnakotka vaatlused Muude liikide suured pesad Planeeritud jaamad Olemasolevad teed Uurimisala Läti Vabariigi piir Prioriteetsed toitumiskohad Potentsiaalsed toitumiskohad Väike-konnakotka pesa kaitsevöönd 2,8 km
Väike-konnakotka kaitsealad
Mikroreservaadi puhvertsoon
Väike-konnakotka mudel (sobivus)
Suur
Väike
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
51
Joonis 24. Herilaseviu vaatlused ja pesad uurimisalal
Merikotkas Haliaeetus albicilla elab tavaliselt veekogude lähedal asuvates metsades ja viibib Lätis aastaringselt. Noored linnud kipuvad rändama pikemaid vahemaid, samas kui täiskasvanud isendid jäävad enamasti pesitsuspiirkonna lähedale. Lähim teadaolev merikotka levikuala asub Eesti Vabariigis, TEJ L_01-st umbes 8 km põhja pool Kariste järve ääres.
Raudkulli Accipiter nisus võib vaadelda kõigi jaamade läheduses terve aasta vältel. Raudkull ei ole erikaitsealune liik. Siiski on teda leitud vähemalt kuues kohas uurimisala äärealal. Eesti Vabariigis leiti üks kasutuses pesa umbes 310 m kaugusel TEJ L_10-st.
Mõju hindamine Eesti ornitofaunale. Kuigi TEJ L_17 ja L_19 asuvad 450–800 m kaugusel kasutusel olevast pesast Lätis ja L_06 1200 m kaugusel pesast Eestis, on leitud, et potentsiaalselt kõige olulisemad toitumispaigad asuvad just pesade läheduses, mitte plaanitava tuulepargi keskosas. Üks teguritest, miks planeeritava pargi keskosa ei ole toidu hankimise seisukohast oluline, on suhteliselt väikesed põllumajanduslikud külvipinnad, samas kui püsirohumaasid ei leidu. Teiseks takistuseks on 1,5 km laiune metsariba Eesti Vabariigis asuvate kotkapesade ja pargis asuvate põllumajanduslike alade vahel. Need tegurid aitavad kaasa sellele, et väike-konnakotkas eelistab toituda suurtel aladel pesa ümber, ja kavandatav pargiala ei ole väike-konnakotka jaoks esmatähtis toitumisala, kuigi ka seal toitumine on võimalik. Seetõttu tuleks eeldatavat märkimisväärset negatiivset mõju, mis tuleneb lühikesest kaugusest TEJ-st pesani, vaadata koos ala vähese tähtsusega toitumise perspektiivist. Seetõttu väheneb mõju asjakohaste leevendusmeetmete kasutamisel märgatavalt. Tuleb lisada, et umbes 20 km kaugusel asuvas Utilitase Saarde tuulepargis on üheksast TEJ-st kaks lähemal kui 1 km (580 ja 730 m) ja üks turbiin 1240 m kaugusel väike-konnakotka pesast.
Oluline aspekt, mida hinnatakse keskkonnamõju hindamise käigus, on kavandatava arendustegevuse kumulatiivne mõju teistele tegevustele või kavatsustele. Kumulatiivne mõju võib tekkida ka linnustiku kaitse kontekstis, eriti kui ühte piirkonda rajatakse mitu tuuleparki. Aruande autorite arvates ei ole kumulatiivsete mõjude täielik hindamine linnustiku kaitse kontekstis praegu võimalik. Selgelt on võimalik väita, et selline mõju tekib, arvestades
Legend
Herilaseviu vaatlused (pesitsejad)
Herilaseviu pesa
Herilaseviu pesa kaitsevöönd 1 km
Herilaseviu pesa kaitsevöönd 2 km
Planeeritud jaamad
Olemasolevad teed
Uurimisala
Läti Vabariigi piir
Läti geoinfoagentuuri topograafiline kaart 1 : 50 000
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
52
ainuüksi Valmiera ja Limbaži piirkondadesse ning Eestis Mulgi valla äärde kavandatavate tuuleparkide arvu.
Eespool öeldut silmas pidades on oodata, et piirkonda kavandatud tuuleparkide rajamisel on kumulatiivne negatiivne mõju linnupopulatsioonidele, mis võib olla märkimisväärne. Kahjuks ei ole praegu võimalik selle mõju suurust kvantitatiivselt hinnata. Aruande autorid on seisukohal, et keskkonnamõju hindamise protsessides rakendatava ettevaatuspõhimõtte tõttu põhinevad järeldused halvimal võimalikul stsenaariumil, st et rajatakse kõik kavandatud tuulepargid. Arvestades seda, et piirkondlikul või riiklikul tasandil ei ole võimalik planeerida ühiseid leevendusmeetmeid, leiavad aruande autorid, et igas tuulepargis tuleks võtta kõik võimalikud leevendusmeetmed, mis võivad potentsiaalselt tuua kaasa olukorra, kus kogumõju ei kujuta endast märkimisväärset ohtu teatavate linnuliikide populatsioonide säilimisele. Seda seisukohta on arvesse võetud ka leevendusmeetmete määramisel ja soovitamisel.
4.6. Maastik ja visuaalne mõju
Keskkonnamõju hindamise käigus vaadeldi neid maastikke, mida Lode tuulepark võib otseselt või kaudselt mõjutada. Geograafiliselt asuvad need Valmiera maakonna põhjaosas, kohe Eesti piiri ääres, kus Läti haldusterritooriumi kontuur moodustab väljaulatuva osa. Põhjast, idast ja läänest mõjutab TEJ park seega kõige otsesemalt Eesti maastikku. Läti poolel on visuaalne mõju nähtav lõunast ja osaliselt ka läänest, kus Eesti territooriumi kontuur moodustab umbes 3–5 km laiuse ja peaaegu 10 km pikkuse „sisselõike“ Läti kontuuri. Seega saab kavandatava tegevuse mõju piirkonna maastikule hinnata võrdselt nii Eesti kui ka Läti poolelt, kuid tuleb märkida, et Eesti poolelt on TEJ park visuaalselt ligipääsetavam nii parema kvaliteediga teekatte kui ka avatuma ja läbipaistvama maastikustruktuuri tõttu. Samuti võib olla suurem mõju tundlikumatele aladele, nagu kultuuripärandi objektid ning maa- ja külahooned, mis on Eesti poolsel naaberalal tihedamini esindatud.
Kavandatava tegevuse üldist visuaalset mõju hinnates järeldati, et mitmekesine taimestiku struktuur toimib visuaalse piiranguna ja varjab sageli täielikult vaated TEJ-dele. Kui aga vaatepunkt on kavandatava tegevuse ala suhtes kõrgemal ja pakub ulatuslikke panoraamvaateid, on kaugus jaamadeni piisav, et vältida nende tajumist domineeriva elemendina.
Vähene oluliste avalike teede võrgustik Läti poolel vähendab ka visuaalset ligipääsetavust, mis on oluline kriteerium maastiku kvaliteedi hindamisel. Samuti vähendab suhteliselt hõre maapiirkondade hoonestus (talud) konflikte elamutele ja lähedalasuvatele küladele avalduvate visuaalsete mõjude hindamisel. Olukord erineb Eesti poolel, kus hoonestustihedus on suurem.
Eestis kaitstakse kõige olulisemaid ja väärtuslikumaid maastikke, mis põhinevad suurel hulgal maastikuväärtustel ehk neid hinnatakse väärtuslikul maastikul põhineval metoodikal. Kavandatava tuulepargi mõjupiirkonnas ei ole maastikukaitsealasid. Ekspert jõudis ümbruskonna väärtuslikele maastikele ja nendele avalduvale võimalikule mõjule hinnangut andes järeldusele, et ükski maastikest ei ole nii väärtuslik, et vaadet ei tohiks täiendada uute tehniliste rajatistega. Kaugemal asuvate maastike puhul on vaatele lisanduval TEJ-l väike mõju. Kõige problemaatilisem on Penuja vald, kus väikese vahemaa tõttu asustatud ja hästi toimivas külas on nähtavad TEJ-d suhteliselt suured. Ekspert juhib tähelepanu sellele, et inimest, kes soovib muuseumilikku ajaloolist maastikku, võib tehnogeenne maastik häirida.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
53
On arutluskoht, kas sada aastat tagasi oli toona uuenduslik elektripost maastikul häiriv objekt või märk uuenduste jõudmisest piirkonda (tõenäoliselt kulus paar aastakümmet, et elekter jõuaks ka sellesse kanti). Sama küsimus on praegu TEJ-de kohta. On see märk puhtast elektritootmisest või rikub see ümbruskonda sealsete elanike jaoks, kes hindavad looduslikku vaadet, jäädes ilma tehniliste võimalusteta. Aja jooksul tekib üle Eesti paratamatult üha rohkem tuuleparke. Võib eeldada, et inimesed harjuvad tuuleparkidega nii nagu mobiilimastide või autodega.
Plaanides olevate maastikuväärtuste säilitamise vaatepunktist puuduvad loodusväärtused, mida tuulepark Lode vallas hävitaks. Rajatavat tuuleparki näeb tulevikus lähemalt ja kaugemalt, aga puuduvad selle ehitamist välistavad tegurid.
Hinnates praegust olukorda ja juhindudes nähtavusalade kaugustest, võib kumulatiivne mõju põhjustada visuaalset koormust Lode ja kahe Saarde tuulepargi vahel Eestis, kuna tuvastatud on hea nähtavusala kattuvused. Kuna aga Lode TEJ park avaldab juba 6 km kauguselt ümbruskonnale väikest visuaalset mõju, ei peeta nähtavusalade kattumist oluliseks.
Selleks et vähendada kavandatava Lode tuulepargi mõju maastiku visuaalsele kvaliteedile ja tagada tuulepargi integreerumine olemasolevasse maastikku, tehakse järgmised leevendusettepanekud.
1) Selleks et vähendada tuulepargi vaatekaugust ja TEJ-de visuaalset mõju tajutavale maastikule, selle iseloomule ja maastiku kui ressursi väärtusele, tuleks pöörata suurt tähelepanu TEJ-de värvile. Soovitatav on värvida tuuleelektrijaamade torn ja rootori labad valgeks, sest nii sulanduvad turbiinid maapinnalt vaadates paremini keskkonda, kuid on samas piisavalt eredad, et piloodid neid õhust hõlpsasti näeksid. Valge värv peegeldab ka päikesevalgust, kaitstes seadmeid ülekuumenemise eest.
2) Selleks et vähendada tuulegeneraatorite signaalvalgustuse mõju maastikule õhtuti ja öösel, on soovitatav kasutada ühevärvilist valgustust.
3) Metsamaadel ja teede ääres, kus elektrijaamade konstruktsioonide transportimiseks ja monteerimiseks tuleb raiuda metsa, on soovitatav kunstlik taasmetsastamine, et vähendada TEJ konstruktsioonide otsest mõju lähivaadetele.
4) Arvestades seda, et kavandatava tegevuse territooriumil on palju väärtuslikke puid, tuleb tagada nende puude kaitse, mitte paigutada jaamu nende vahetusse lähedusse ning kaasata projekteerimis- ja ehitusetapis sertifitseeritud arboristi, kes annab kavandatava ehituse mõju leevendavate meetmete kohta juhiseid. Peale selle tuleks kasutada tarneteede trassi ettevalmistamiseks arboristi, kui otsustatakse piirata eraldiseisvate puude või puurühmade võrasid.
5) Tarnemarsruutide kavandamisel tuleb valida tarneteed, mis välistavad mahukate TEJ elementide tarnimiseks vajaduse ulatuslike teeäärsete puhastustööde järele. Võimaluse korral tuleks luua ajutised ümbersõiduteed, et minimeerida võimalikku puude, puuderühmade, puude ridade või puiesteede langetamist või raiumist.
Tuuleelektrijaamade tehnoloogiliste alternatiivide parameetrid, mida hinnati KMH käigus, on samaväärsed ja maastikukaitse kontekstis võib tehnoloogilisi alternatiive pidada samaväärseks ning ei ole põhjust määrata mõnda hinnatava TEJ mudelit teistest paremaks.
Üksikasjalikumat analüüsi maastikumõjude kohta vt aruande peatükist 4.6.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
54
Maastik ja visuaalne mõju – piiriülene mõju
Kavandatava Lode tuulepargi maastikumõju hindamiseks kasutati Eesti maastikuarhitekti, ekspert Heiki Kalbergi arvamust.
Maastikumõju käsitlevad õigusaktid Eestis
Eestis reguleerib maastikukaitset mitu õigusakti, mille eesmärk on säilitada looduslikke elupaiku, bioloogilist mitmekesisust ja kultuuripärandit kui osa maastikust. Allpool on loetletud peamised maastikukaitset käsitlevad õigusaktid Eestis:
- Looduskaitseseadus10:
Looduskaitseseadus sätestab maastike, ökosüsteemide ja bioloogilise mitmekesisuse säilitamise põhimõtete ja eeskirjade üldise raamistiku. Selle seadusega kehtestatakse erinevad kaitsealad, sealhulgas rahvuspargid, looduskaitse- ja maastikukaitsealad. Selles sätestatakse ka nende alade haldamise ja kasutamise üldpõhimõtted, et tagada nende kaitse.
- Planeerimisseadus11:
Planeerimisseadus reguleerib maakasutuse planeerimist, et tagada säästev areng ja maastikukaitse. Selles sätestatakse riiklike, piirkondlike ja kohalike kavade koostamise ja rakendamise protsessid.
Seadus rõhutab vajadust arvestada keskkonnamõjusid, sealhulgas maastikumõjusid, kõigil planeerimise tasanditel.
- Keskkonnamõju hindamise ja keskkonnajuhtimissüsteemi seadus12:
Seadus nõuab keskkonnamõju hindamist (KMH) projektide puhul, millel on eeldatavasti oluline mõju keskkonnale, sealhulgas maastikele.
- Muinsuskaitseseadus13:
Muinsuskaitseseadus sätestab kultuuripärandi, sealhulgas ajalooliste ja kultuuriliste väärtustega maastike kaitse. See seadus sisaldab nõudeid kultuuripärandi kaitsealade määramise ja haldamise kohta, et säilitada nende kultuurilisi ja maastikulisi väärtusi.
- Metsaseadus14:
Metsaseadus reguleerib metsade säästvat majandamist ja kasutamist. See hõlmab reegleid, mille eesmärk on metsamaastike kaitsmine ja bioloogilise mitmekesisuse säilitamine. Selles seaduses on sätestatud nõuded metsamajanduskavadele ja väärtuslike metsaelupaikade kaitsele.
Õigusraamistiku kohaselt määratakse planeeritava tegevuse nõuded ja piirangud kindlaks, sealhulgas maastikukaitse kontekstis, kohalike omavalitsuste tasandil, nende planeerimisdokumentides ja ehitusmäärustes.
10 https://www.riigiteataja.ee/akt/LKS 11 https://www.riigiteataja.ee/akt/PlanS 12 https://www.riigiteataja.ee/akt/KeHJS 13 https://www.riigiteataja.ee/akt/119032019013 14 https://www.riigiteataja.ee/akt/MS
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
55
Kavandatava tegevuse ala piirneb Eestis Mulgi vallaga (enne haldusreformi Abja vald), mille üldplaneeringu dokumendis15 on sätestatud, et tuuleparkide rajamine ei ole lubatud valla planeeringus määratud maastikulise väärtusega aladele.
Eestis ei ole tuuleparkide ja elamupiirkondade vahelise kauguse miinimumnõudeid riiklikul tasandil kehtestatud. Selle asemel määravad need vahemaad kindlaks kohalikud omavalitsused oma ehitusmäärustes. Mulgi maakonna siduvad eeskirjad ei kehtesta piiranguid, näiteks minimaalseid kaugusi elamutest.
Maastikumõju hindamise plaan Eestis
Hindamise aluseks on väärtuslike maastike määramise metoodika16, Mulgi valla üldplaneering17, tuuleparkide rajamisest tingitud visuaalsete muutuste hindamise metoodika18, välitöö jooksul saadud kogemused ning tehtud tööd ja visualiseeringud, mille tellija koostas keskkonnamõju hindamise käigus.
Maastiku väärtused määratakse kolmepallisel skaalal:
- madal või ebaselge;
- keskmine või ebaühtlane;
- kõrge.
Väärtuslike maastikute puhul hinnatakse järgmist viit väärtuse tüüpi:
- kultuuriline ja ajalooline väärtus;
- esteetiline väärtus;
- looduslik väärtus;
- identiteediväärtus;
- puhke- ja turismipotentsiaal ehk puhkeväärtus.
Kavandatava tegevuse maastikule avaldatava mõju analüüsis määratakse kindlaks ja hinnatakse mõju väärtuslikele maastikele potentsiaalses mõjupiirkonnas.
Kavandatava tegevuse ala piirneb idas, põhjas ja läänes otseselt Eesti territooriumiga ning KMH menetlus on kõnealuse pargi arendamisel rakendatav ka Eestis.
Lode tuulepark asub geograafiliselt Valmiera maakonna põhjaosas, Eesti piiri ääres, kus Läti haldusterritooriumi kontuur moodustab väljaulatuva osa. Põhjast, idast ja läänest mõjutab TEJ park seega kõige otsesemalt Eesti maastikku. Läti poolel on visuaalne mõju nähtav lõunast
15https://mulgivald.ee/documents/18442398/21825375/Lisa+12.+Abja+valla+%C3%BCldplaneeringu+seletuski ri.pdf/1e38e3be-b413-41f8-b8c0-f235d9eebf43 16 K. Hellström, H. Alumäe, A.Palo, H. Palang, K. Sepp, A.Koppelmaa. 2001. Väärtuslike maastike määratlemine. Metoodika ja kogemused. Hiiumaa-Tartu-Viljandi. 17 https://mulgivald.ee/documents/18442398/21825375/Lisa+12.+Abja+valla+%C3%BCldplaneeringu+seletuskiri. pdf/1e38e3be-b413-41f8-b8c0-f235d9eebf43 18 A. Tara. 2022. DVC as a Supplement to ZVI: Mapping Degree of Visible Change for Wind Farms. https://www.researchgate.net/publication/362429091_DVC_as_a_Supplement_to_ZVI_Mapping_Degree_of_ Visible_Change_for_Wind_Farms. Vaadatud 20.02.2024
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
56
ja osaliselt ka läänest, kus Eesti territooriumi kontuur moodustab umbes 3–5 km laiuse ja peaaegu 10 km pikkuse „sisselõike“ Läti kontuuri.
Künklikku ala iseloomustab ka suur bioloogiline ja seega ka maastikuline mitmekesisus, kuna väikeste nõgude ja küngaste koosmõju pakub mitmekülgseid hüdroloogilisi tingimusi. Madalamates kohtades tekivad niiskemad alad, mis praeguses olukorras on kujunenud soodeks. Üldiselt pakub metsa- ja põllumaade kooslus ka erinevaid vaateid, kus avatud vaated lähevad üle lähivaadeteks ja mõnikord isegi täiesti suletud aladeks.
Reljeef on suures osas homogeenne laiemal alal, koos väikeste struktuurielementidega, mis ulatuvad kuni Halliste jõeni Eestis, kus reljeefi muutlikkus on märgatavam. Taimkate näitab Eestis ühtlasemat metsa- ja põllumaade kooslust. Seevastu kavandatava tegevuse piirkonnas ja sellega piirneval Läti territooriumil on taimkate killustatum, kus põllu- ja metsatükid on väiksemad ja nende vaheldumine intensiivsem.
Üldiselt iseloomustab ümbritsevat maastikku lihtne, piirkonnale iseloomulik reljeefsus, taimestik ja muud maastikuelemendid. Enamik vaateid on avarad ja avatud, mida piiravad mõnes kohas olemasolevatele teedele lähemal olevad metsatukad või hajutatud puude kogumid ja puuread, mis pakuvad vaadetele vaheldust. Ümbruskonna uuringu käigus ei ilmnenud eriti suure maastikulise väärtusega vaateid, kuid kvaliteedi tunnuseid võib näha kohtades, kus vaatepunkt on ümbruskonna suhtes kõrgem, kusjuures selliseid vaateid on rohkem Eesti poolel, nt sõites teel 182 (Abja-Paluoja–Vana-Kariste–Kamali).
Uurimisala hõlmab Halliste jõe orgu suhteliselt tasase ja lainelise põllumajandusmaastikuga, mis ulatub Abjast Karksi-Nuiani. Ajalooliselt oli tegemist tüüpilise, suurte põllumaadega piirkonnaga, kus looduslikku maastikku esindas vaid Halliste jõe org, mille nõlvad olid enamasti võsastunud või metsaga kaetud, ent Abja pool kohtas ka lamminiite. Halliste jõe orus ja orunõlvadel on ka vanemaid metsaalasid ja -vööndeid. Siin on olnud palju mõisaid (Abja, Pornuse, Pöögle, Kaubi). Üldiselt domineerisid territooriumil hajatalud ja üksikud külad: Allaste, Leeli, Univere, Mäkiste.
Tänapäeval on piirkonna maaelu iseloom säilinud. Põllumajandusalad on endiselt kasutusel, kuid vähemal määral, ja mõned neist on kinni kasvanud. 20. sajandi 60. ja 70. aastatel melioreeriti põllumajanduspiirkondi ulatuslikult, kaotades nende struktuuri ning nende vahel olevad kasesalud ja ka mõned talukohad. Halliste orust põhja pool asuv teedevõrk on hästi säilinud, samas Karksi-Nuia–Abja teed sirgendati ja uuendati 2000. aastate alguses. Kohati on teeäärtes veel säilinud kuusehekid ja puude rühmad.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
57
Joonis 25. Väärtuslikud maastikud kavandatava tuulepargi ümbruses (tuulepark punase ovaali keskel)
Halliste jõe org Abja ja Karksi-Nuia külade vahel on piirkondliku tähtsusega maastik (potentsiaalse riikliku tähtsusega) (vt joonisel 25 nr 1)
Endiste mõisate maastikud, kus on näha nende territooriumi piirjooned ja osaliselt säilinud mõisahooned, samuti talukohad, on suure kultuuriloolise väärtusega.
Laiad vaated Halliste jõe orule ja teedelt lähiümbrusele on esteetiliselt väga väärtuslikud.
Loodusväärtuste osaks on erinevad maastikuelemendid – Halliste jõe org koos lamminiitudega, millest osa on võsastunud, metsamassiivid ja väikesed puuderühmad.
Ala puhkeväärtus on keskmine, peamiselt teelt avanevate vaadete tõttu. Ajalooliste mõisate kehv seisukord ei muuda neid siiski atraktiivseteks puhkekohtadeks.
Üldiselt mõjutab kavandatav tuulepark Halliste jõeoru põhjaosa vähe või üldse mitte.
Suuremaid muudatusi maastikule on oodata Valga–Uulu teest nr 3 lõunas, kus tuulegeneraatorid on maanteelt selgelt nähtavad. Neid mõjusid ei peeta siiski märkimisväärselt negatiivseks, kuna maastik on juba aja jooksul muutunud ja seda ei peeta ajalooliselt oluliseks. Visualiseeringuid saab vaadata lisas esitatud maastikueksperdi arvamuse juures.
Majori talumaastik on kohaliku (omavalitsuse) tähtsusega maastik (vt joonis 25, punkt 2). See asub kavandatava tegevuse piirkonnast umbes 10 km ida pool.
Legend
Uurimisala
Väärtuslike maastike piirkond
Nr Nimi
5 Väärtuslik maastikuala tee Abja-Paluoja–Läti piir ääres
4 Kangru küla ümbruse maastikukaitseala
3 Väärtuslik maastikuala Halliste jõe orus Saapa külast kuni Kariste järveni
1 Halliste jõeoru maastik Abja ja Karksi-Nuia külade vahel
2 Väärtuslik maastikuala Majori talu ümbruses
6 Väärtuslik maastikuala Lilli-Ruhijärve küla ümbruses
Väärtuslike maastike piirkond
Riiklikult olulise maasti- kulise väärtusega ala
Piirkondliku ja kohaliku maastikulise väärtusega alad
Visuaalse mõju ala
Olematu
Väike
Keskmine
Suur
Väga suur
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
58
Majori talu asub Karksi-Nuiast 5-6 km edelas, Saaretse soo lääneserval, ümbruskonna kõrgeimas kohas. Talu on taastatud ja hõlmab umbes 20 ha suurust ala, mida hooldatakse traditsioonilisel viisil. Talu ümbritsevad mitmekesised, enamasti soostunud metsad, kus mõnest soost kaevandati 20.–50. aastatel turvast.
Selle maastiku suur kultuurilooline väärtus tuleneb selle hoidmisest heas seisukorras, sest mõned hooned on 200 või enam aastat vanad. Läbi Saaretse soode läheb vana, palkidele rajatud militaartee.
Selle suur esteetiline väärtus tuleneb kaunist, hästi hooldatud traditsioonilisest talumajapidamisest, mis asub keset kaunist muutliku reljeefiga loodust.
Talu identiteediväärtus on keskmine, kuna seda teatakse ka väljaspool Mulgimaad. Piirkonna puhkeväärtus on keskmine, koosnedes peamiselt matkaradadest ja ökoturismipakkumistest, mis küll ei ole väga laiad.
Kavandatava tegevuse mõju on väike või tühine, kuna talu asub keset metsa, kus TEJ on peaaegu nähtamatu.
Kohaliku tähtsusega väärtuslik maastik Halliste jõe orus, Saapakülast kuni Kariste järveni (vt joonis 25, punkt 3) (ala asub tuulepargist umbes 5,5 km kaugusel põhjas ja kirdes)
Ala hõlmab Halliste jõe orgu ja sellest põhja pool asuvaid talusid ja asulaid (külad: Päigiste küla, Saapaküla, Vana-Kariste). Alal asuvad ka Vana-Kariste mõis ja Kariste järve tamm. Selle piirkonna põhjaosas on ulatuslikud lainelise reljeefiga põllumajandusmaastikud, lõunaosas metsast ümbritsetud Halliste jõeorg. Ka Kariste järv on enamasti ümbritsetud metsaga.
Vana-Kariste mõisakompleksist on säilinud vaid üks küljeosa hoone. Mõisa territooriumilt avaneb vaade (üks vähestest) Vana-Kariste järvele. Vaadet rikub mõisahoone kõrval asuv nõukogudeaegne kolhoosiait.
Endine Liplapi majapidamiskool (1910–1927) asub Uue-Kariste tee ääres ja selle pargilaadsel territooriumil kasvavad istutatud lehtpuud.
Piirkonna keskmine kultuuripärandi väärtus tuleneb peamiselt hästi säilinud põllustruktuurist, mida siiani majandatakse, ning heast teedevõrgustikust. Maastik on keskmise esteetilise väärtusega, avarate vaadetega, sealhulgas Vana-Kariste mõisa juurest järvele. Maastiku puhkeväärtus on samuti keskmine, peamiselt Kariste järve põhjaosas asuvate külalistemajade pakutavate puhkevõimaluste tõttu.
Kavandatava tuulepargi visuaalne mõju on väike või ebaoluline. Kauniste maastikuvaadetega kohtades muutuvad TEJ-d taustal nähtavaks, kuid nende mõju ei ole domineeriv. Kavandatav tuulepark ei mõjuta maastikulisi väärtusi, kuna need on üsna kohaspetsiifilised ega ole seotud ajalooliselt säilitatava panoraamvaatega. Visualiseeringuid saab vaadata lisas esitatud maastikueksperdi arvamuse juures.
Kangru küla asub kavandatavast tuulepargist umbes 3,3 km loodes (joonis 25, punkt 4)
Kangru küla on väärtuslik maastikukaitseala, mis asub Veelikse–Laatre–Läti piir tee ääres. Kangru küla on osa Veelikse külast. Talud on koondunud tee äärde, kus on mitmesuguseid teeäärseid istandusi. Põllumaad majandatakse ja hooldatakse. Ala peamised maastikulised väärtused on väike veekogu ja väike tamm ning Laatre raudteejaama hoone, mis on ühtlasi arhitektuurimälestis.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
59
Valga–Uulu teelt Läti piiri poole avanevad maalilised vaated vaheldusrikkale maastikule, pikad ja avatud vaatealad, üksikult seisvad suured puud ning tee ääres kasvavad puud ja ilupõõsad. Maastikku täiendavad aktsentidena eri vanuses talus. Samas läbib vaadet 330 kV kõrgepingeliin.
Kavandatava tuulepargi visuaalne mõju on väike, kuna maastikul on laiad avatud vaated. TEJ- d on hästi nähtavad ja paistavad maastikul silma, mida lähemale jõuda Läti piirile. Samas on kaugus TEJ-deni üle kolme kilomeetri ja need ei avalda domineerivat mõju. Kavandatav tuulepark ei mõjuta ega vähenda maastiku väärtust. Visualiseeringuid saab vaadata lisas esitatud maastikueksperdi arvamuse juures.
Penuja, Abja-Paluoja–Läti piir tee asub kavandatavast tegevuspiirkonnast umbes 2 km idas (vt joonis 25, punkt 5)
Penuja on väärtuslik maastikuala Abja-Paluoja–Läti piiri ääres. Tee ei ole määratud maastikuliseks teeks, kuigi eksperdi arvates võib teelt avanevaid vaateid hinnata väärtuslikuks. Nende hulka kuuluvad vaated külale kiriku ja endise koolimaja varemetega, mitmekesine teeäärne taimestik talukohtade lähedal ning nii majandatud kui ka mahajäetud põllumaad. Abja valla üldplaneeringus (2008) on see osaliselt määratud väärtuslikuks hoonestatud alaks.
Teelt vaadates pakub maastik segu väga hästi hooldatud taludest (Kaidiaia, Känsi), vanadest ja ebapiisavalt hooldatud taludest, hiljuti ehitatud majapidamistest ja osaliselt lagunenud hoonetest. Tegu ei ole vaid ühe ajastu ehitistega. Teelt on näha ka elektriliinid, alajaam ja väikesed päikesepargid.
Lode tuulepark asub teest lääne pool, kus maastik on metsasem. Avatud vaated on rohkem teest ida poole. Penuja küla ümbruses on rohkem vaateid tuulepargile ja TEJ-d on selgelt nähtavad. Lähim TEJ on elamurajoonist umbes 1,3 km kaugusel.
Planeeritava tuulepargi visuaalne mõju Penuja külas ja Sate külast läänes on lühikese vahemaa tõttu märkimisväärne. Tuulepargi rajamine vähendab maastiku looduslikku esteetilist väärtust. Eespool kirjeldatud teelõik ja Penuja küla ei ole kultuuriloolise väärtusega, vaid sisaldab eri ajastutest pärit ehitisi, kuid tegu on hästi hooldatud maastikuga, millel on tulevikupotentsiaal. Penuja küla, selle ümbrus ja ehitised on aja jooksul muutunud ja muutuvad tõenäoliselt ka tulevikus, olenemata Lode tuulepargi rajamisest. Maastikuarhitektuuri seisukohast on tuulepargi rajamine vastuvõetav. Visualiseeringuid saab vaadata lisas esitatud maastikueksperdi arvamuse juures.
Lilli-Ruhijärve maastik, mis asub tuulepargist umbes 10 km kagus (vt joonis 25, punkt 6).
2015. aasta inventuuri käigus lisati Lilli-Ruhijärve maastik II kategooria maastikukaitsealade nimekirja. Piirkonda kuuluvad Lilli küla, Peraküla ja Ruhijärv ning Teringi maastikukaitseala. Maastik on künklik ja vahelduv, seda läbib Lilli oja org. Kõrgustikel domineerivad nii põllumajandusmaad kui ka metsamaad. Madalamad alad, sealhulgas Ruhijärve ümbrus, on enamasti mets. Lillit läbiv tee (Viljandi–Karksi–Ruhja) on tõenäoliselt väga vana. 13. sajandil kasutasid ordurüütlid seda sõjateena ja 19. sajandil kasutati seda kaupade veoks Riia turule. Viimase hinnangu kohaselt on ala maastikuline väärtus vähenenud, peamiselt Lilli külla hiljuti rajatud tee tõttu.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
60
Kavandatava tegevuse visuaalne mõju alale on keskmine ja kohati vähene. Kavandatav tuulepark ei mõjuta maastikulisi väärtusi, kuna need on üsna kohaspetsiifilised ega ole seotud ajalooliselt säilitatava panoraamvaatega. Visualiseeringuid vaadata KMH aruande 9. lisast.
Ekspert leiab üldiselt, et kavandatava tegevuse mõju on tühine, kuigi ümbritsev maastik muutub kahtlemata, eriti kavandatavale tuulepargile lähemal asuvates piirkondades.
Arvestades alternatiivse energia päevakohasust, tuleks kavandatavaid tuuleparke vaadata mitte ainult otseses mõjualas, vaid ka seoses kõrvalasuvate ja kavandatavate tuuleparkide arendustega. See aitaks varakult tuvastada konfliktipiirkondi ja leida lahendusi, et vältida laiemat maastiku visuaalse kvaliteedi halvenemist.
Kavandatava tegevuse piirkonnas ligi 10 km kaugusel edelas (Eestis) asub Saarde tuulepark ning kavandatakse veel üht, Saarde II, kuhu on kavas paigaldada 18 TEJ kõrgusega 230 m. Ida pool on kindlaks määratud võimalikud alad kahe uue tuulepargi arendamiseks. Hinnates praegust olukorda ja juhindudes nähtavusalade kaugustest, võib kumulatiivne mõju põhjustada visuaalset koormust Eestis Lode tuulepargi ja kahe Saarde tuulepargi vahel, kuna tuvastatud on hea nähtavusala kattuvused. Kuna aga visuaalse mõju kaardi kohaselt avaldab Lode tuulepark juba 6 km kauguselt ümbruskonnale väikest visuaalset mõju, ei peeta nähtavusalade kattumist oluliseks.
4.7. Kultuuriloolised väärtused
Planeeritav tuulepark hakkab paiknema kitsal maaribal Vidzeme põhjaosas asuvas Lode vallas. Lode valla territoorium oli ka ajalooliselt hõredalt asustatud, sest see asus eestlaste Sakala lõunaperifeerias ja vanade latgalite Tālava põhjaperifeerias. Piirialadel elamise arengut takistasid ka omavahelised tülid.
Kavandatava tuulepargi vahetus läheduses asub üks riikliku kaitse all olev kultuurimälestis, Urga Rootsi kivi kirjade ja märkidega, mis on piirkondliku tähtsusega kultuurimälestis – arheoloogiamälestis. Urga Rootsi kivi kaitsevöönd on 500 m. Kavandatav TEJ L_03 asub mälestise kaitsevööndis, umbes 400 m kaugusel kivist. Kuna tuulegeneraatori kaablid paigaldatakse kagusse, st kivi vastaspoolele, ei ohusta selle TEJ ehitamine ja käitamine Urga Rootsi kivi.
Arakste mõis asub kavandatavast tuulepargist umbes 2 km lõuna pool, seega ei ohusta tuulegeneraatorite ja nendega seotud kommunikatsioonide ehitamine neid kultuuriloolisi väärtuseid.
Umbes 4-5 km kaugusel kavandatava tegevuse kohast asub veel üks arheoloogiamälestis – Kalnalammiki muinasasula ja ohvrikivi kultuspaik (piirkondliku tähtsusega kultuurimälestis Valmiera piirkonnas Lode vallas Kalnalammiki lähedal). Ka seda objekti ei ohusta tuulepargi rajamine.
Eksperdi arvamuse kohaselt ei ohusta kavandatava tegevuse elluviimine riiklikult kaitstavat kultuurimälestist Urga Rootsi kivi, Arakste mõisa hooneid, Ķirbele keskaegset kalmistut ega Veckābuļi keskaegset kalmistut.
Ehitades tuulepargi kommunikatsioone ja aeda, kui see on plaanis, tuleb tagada vaba juurdepääs kultuurimälestistele tuulepargis ja selle ümbruses.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
61
Kuna Araste mõisast lõuna pool on mitmeid teateid ja leide, mis viitavad keskaegsetele matmispaikadele, on võimalik, et ka Araste põhjaosas, kavandatava tuulepargi piirkonnas, võib olla veel tundmatuid keskaegseid matmispaiku. Seetõttu peaks enne tuulepargi ehitamist (pärast pinnase pealmise kihi eemaldamist) uurima pargiala professionaalne arheoloog kontrollimaks, ega tuulegeneraatorite ja kommunikatsioonide rajamise asukohtades pole arheoloogilisi objekte. Tuleb arvestada sellega, et ministrite kabineti määruse nr 720 lõike 32 järgi tuleb ka ehitustööde ajal kultuuripärandi väärtusega objektide avastamise korral tööd peatada ja teatada leiust muinsuskaitseametile.
Praegu ei ole kavandatava tuulepargi piirkonnas teateid lahingute või sõjameeste matmispaikade kohta. Kuid nii Esimese maailmasõja kui ka Vabadussõja ajal liikusid armeed selles piirkonnas ja toimus ka pooltevahelisi konflikte. Kui kaevetööde käigus leitakse langenud sõdurite haudu, tuleb sellest teavitada politseid ja ühingut „Vennashaudade komitee“ 19.
Leides lõhkeohtlikke esemeid, tuleb sellest teatada lähimale politseijaoskonnale (tel 110), ümbritsedes leiukoha enne seda piiretega.
Kõik eespool nimetatud nõuded kehtivad ka Ipiku vallas kavandatud kaablikraavide rajamise kohta.
Joonis 26. Kavandatavate TEJ-de paigutus ja ümbruskonna kultuuriloolised väärtused
Legend
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta
koostatud digitaalset kaarti JS Baltija.
Kultuuriloolise tähtsusega mälestusmärk
Mälestusmärgi kaitsevöönd
Tuuleelektrijaamade paigutus
Planeeritud kaabli trass
Juurdepääsutee
Ehitusala
Alajaam
Uurimisala
Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
62
Kultuuriloo ekspert on hinnanud kavandatava tuulepargi ehitamisega seotud mõju kultuurimälestistele ja kultuurilooliselt olulistele paikadele ning jõudnud järeldusele, et kavandatavate TEJ-de ja juurdepääsuteede ehitamine ning kavandatavate TEJ-de käitamine ei kujuta endast ohtu riikliku või kohaliku tähtsusega kultuurimälestistele.
Kultuuripärand – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eesti territooriumil asuvatele kultuuriloolistele väärtustele.
4.8. Õhu kvaliteet
Kavandatava Lode tuulepargi ehitamise ja käitamise ajal elluviidava tegevuse analüüs näitas, et ehitusperioodil võib tekkida õhusaasteainete heidet, kuid käitamisperioodil ei ole võimalik tuvastada olulisi heiteallikaid. Peamised õhukvaliteediga seotud mõjud, mis võivad tekkida ehitamise ajal, on järgmised:
- visuaalselt nähtavad tolmupilved; - tolmu ladestumine; - ehitustegevusest tingitud PM10 kontsentratsiooni suurenemine; - NO2, PM10 ja PM2.5 kontsentratsioonide suurenemine ehitusmasinate ja veoautode
heitgaaside tõttu.
Õhusaaste kontsentratsioon kavandatava tegevusala läheduses on väike ega ületa ministrite kabineti kehtestatud piirväärtusi. Kõikide saasteainete kontsentratsioonid on allpool saastatuse hindamise alumist künnist (vastavalt 65% lämmastikoksiidi aastasest piirväärtusest ja 50% tahkete osakeste aastasest piirväärtusest). See tähendab, et õhu kvaliteet uuringupiirkonnas on hea ja õhu kvaliteedi parandamiseks ei ole vaja võtta meetmeid. Suurimaid saasteallikate kontsentratsioone võib täheldada kahe kohaliku riigitee V176 Sīļi–Eesti piir ja V177 Ķoņi–Lode–Arakste läheduses, mis on seotud sõidukite liikumisega. Võimalik saasteallikas on ka turbakaevandamine Eestis Pätsi soos. Selle heitkoguseid ei ole hinnangus arvesse võetud, kuna turbakaevandamise mõju õhu kvaliteedile hinnatakse oluliseks ainult allika vahetus läheduses ja see ei mõjuta potentsiaalseid TEJ rajamise alasid ning maavarade transport ei toimu kavandatava tegevuse mõjupiirkonnas.
Ehitustöödega seotud liiklusmahtude analüüs näitab, et aasta keskmine ööpäevane liiklussagedus (AKÖL) jääb alla 1000 sõiduki, samas kui kaubaveokite keskmine AKÖL ei ületa 200 sõidukit päevas, mis DMRB juhiste kohaselt mõjutab õhu kvaliteeti vähe.
Ehituse ajal oodatavat mõju on hinnatud, võttes arvesse kaugust tundlike vastuvõtjateni, vastuvõtjate hulka ja taustasaaste kontsentratsiooni. Analüüsitud on nii ehitustegevuse võimalikke häiringuid (visuaalselt nähtavaid tolmupilvi ja sadestumist) kui ka PM10 osakeste võimalikku mõju inimeste tervisele. Hinnates teavet ala tundlikkuse kohta tolmu tekitavate häiringute suhtes, jõuti järeldusele, et PM10 tase kavandatava tegevuse mõjupiirkonnas ei jõua alumise hindamise piirväärtuseni (< 24 µg/m3). Seetõttu on ehitustegevuse mõju inimeste tervisele eeldatavasti tühine (väike).
Võimalikud häiringud võivad tekkida uutel ja ümberehitatavatel teelõikudel ning võimalike alajaamade ehituskohtades.
Arvestades seda, et ehitustööde mõjude riskitase on hinnatud ebaoluliseks ja et juurdepääsuteedel toimuva sõidukiliikluse märkimisväärset mõju ei ole oodata, rakenduvad
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
63
kruusateedel toimuvale sõidukiliiklusele ebaspetsiifilised leevendusmeetmed, nimelt teepinna niisutamine või tolmuvastane töötlemine, kui saadakse elanike kaebuseid häiriva tolmu kohta.
Õhu kvaliteet – piiriülene mõju.
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju õhu kvaliteedile Eesti territooriumil.
4.10. Kliima
Kliimamuutus on üks komplekssemaid globaalseid probleeme, millega seisavad silmitsi ühiskond ja inimkonna püsimise jaoks elutähtsad süsteemid, nagu ookeanid ja maismaa ökosüsteemid. Kliimamuutused on peamiselt seotud kasvuhoonegaaside sisalduse tõusuga atmosfääris, mis avaldab üha suuremat mõju globaalsetele kliimaprotsessidele. Inimtegevusest tulenevad kasvuhoonegaasid (edaspidi: KHG) tekivad peamiselt fossiilkütuste põletamisel energia saamiseks ja fossiilkütuste kasutamisel erinevates transpordiliikides. Märkimisväärsed heitkogused on seotud ka maakasutuse muutustest tuleneva mõjuga, nagu näiteks kuivendusest mõjutatud ning orgaaniliste ainete poolest rikastest muldadest (turbamullad) tulenevatest heidetest ja põllumajandusmaa rajamiseks metsade raadamisest tulenevatest heidetest.
Kavandatava tegevuse kliimamõju moodustub ühelt poolt tuulepargi ehitamise ja käitamisega seotud otsestest KHG heitkogustest ning teiselt poolt KHG heitkoguste vähenemisest ehk taastuvenergiast, mis asendab fossiilkütustest toodetud energiat ja sellega seotud KHG heitkoguseid.
KHG heitkogused, mis on seotud tuulepargi arendamisega, hõlmavad järgmist:
a) TEJ olelustsükli heitkogused – KHG heitkogused, mis on seotud tootmise, transpordi, paigaldamise ja kasutusjärgse demonteerimisega;
b) KHG heide ja heite sidumisvõime kadumine maakasutuse muutuse tõttu (metsade raadamine, turba või turbaalade kuivendamine ja potentsiaalsete CO2 sidujate kadumine raiutud aladel);
c) KHG heitkoguste vähendamine või asendamine.
Kavandatava tegevuse kliimamõju hinnatakse kui kavandatud tegevuse elluviimisest tulenevate kasvuhoonegaaside heitkoguste tüübi ja mahu muutumist. See koosneb kavandatud tegevuse rakendamisega seotud KHG heitkoguste muutustest (1) TEJ olelustsükli jooksul, (2) ehituse – metsa raadamise ja maakasutustüübi muutusega seotud heitkoguste muutumisest ning (3) kavandatud tegevuse rakendamisega seotud kasvuhoonegaaside heitkoguste vähendamisest või asendamisest – fossiilsetest ressurssidest toodetud energia (ja sellega seotud KHG heitkoguste) asendamisest taastuvatest energiaallikatest toodetud energiaga.
Kavandatava tegevuse piirkonnas asuvad järgmised maakasutustüübid, mis on kavas muuta muudeks maakasutustüüpideks:
- põllumajandusmaad peetakse KHG heiteallikaks, seega kavandatava tegevuse elluviimine ja olemasolevate maakasutustüüpide muutmine sellisteks, mis KHG heidet ei tekita, vähendab kavandatavast tegevusest tulenevaid KHG heitkoguseid;
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
64
- 17,3 ha metsamaad, kus KHG sidumist hinnatakse kui CO2 sidumist elusas biomassis (puidus), surnud puidus ja mulla orgaanilises aines. Sellise ala muutmine on seotud KHG heitkoguste suurenemisega.
Oluline on märkida, et kavandatava tuulepargi suhtes rakendatakse „Energia varustuskindluse ja sõltumatuse edendamiseks vajalike energiavarustusstruktuuride rajamise lihtsustatud korra seaduse“ nõudeid ning seaduse artikli 9 lõikes 1 on sätestatud, et kui TEJ rajatakse metsamaale, tuleb metsade raadamise negatiivne mõju kompenseerida metsastamisega. Uute alade metsastamine toob eeldatavasti pikemaks ajaks kaasa heitkoguste sidumise võime taastumise. Arvestades ettenähtud tasandusmehhanismi, on maakasutustüübi, maakasutustüübi muutmise ja metsa vaatepunktist KHG heitkoguste pikaajaline mõju hinnangu järgi neutraalne.
KHG heitkoguste bilansi kõige olulisem osa on kavandatava tegevuse elluviimisega seotud KHG heitkoguste vähendamine või asendamine – fossiilsetest allikatest pärineva energia (ja sellega seotud KHG heitkoguste) asendamine taastuvatest energiaallikatest toodetud energiaga. Selleks et hinnata KHG heitkoguste hulka, mida taastuvate energiaallikate kasutamine asendab, on arvutatud KHG heitkoguste muutused, mis on seotud uue elektritootmistehnoloogia kasutuselevõtu ajal toodetud elektrienergia ülekandmisega elektrivõrku.
Tuginedes TEJ tootjate esitatud elektritootmispotentsiaali prognoosidele ning seni kogutud andmetele tuule kiiruse kohta kavandatava tegevuse piirkonnas, võib hinnata, et Lode tuulepargis toodetakse 374,49 kuni 594,51 GWh elektrienergiat aastas.
Eespool esitatu kohaselt on uue elektritootmistehnoloogia abil toodetud elektrienergia elektrivõrku ülekandmisega seotud KHG heitkoguste potentsiaalne vähenemine hinnangu järgi vahemikus 24 791,24 t CO2 ekvivalenti aastas kuni 39 356,56 t CO2 ekvivalenti aastas olenevalt valitud TEJ turbiinide mudelist.
Hinnangu järgi (olenevalt TEJ tehnoloogiast) on elektrijaama kasutusea jooksul (25 aastat) välditav kasvuhoonegaaside heitekogus 619 781 kuni 983 914 t CO2 ekvivalenti.
Kavandatava tegevuse elluviimise korral toodetaks elektrit taastuvatest allikatest. See toodetud energia asendab fossiilkütustest olenevast elektritootmisest saadavat energiat ja sellega seotud kasvuhoonegaaside heidet, millel on sel moel hea mõju kliimale. Kavandatav tegevus aitab vähendada CO2 heitkoguseid, mis muidu tekiksid, kui sama energiat, mida toodab kavandatav TEJ, toodetaks osaliselt või täielikult tavapärastes fossiilkütustel töötavates elektrijaamades. Arvestades tuulepargi prognoositud võimalikku 25–30 aasta pikkust kasutusiga, on heitkoguste asendamine tagatud märkimisväärse aja jooksul, millel on pikas perspektiivis oluline positiivne mõju.
Kliimamõju – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eestis.
4.11. Geoloogia, hüdrogeoloogia (sealhulgas veevõtukohad) ja pinnaveevoolud
Asukoht ja reljeef: kavandatav Lode tuulepark asub Burtnieksi tasandiku põhjaosas Põhja- Vidzeme madalikul, Sakala kõrgustikul Ērģeme küngaste lähedal. Sellel madalikul on divergentse pinnamoega ulatuslikud voored, mille on kujundanud jääliustiku liikumine. Ala on
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
65
laineline ja vooreline, kvarternaari kiht on õhuke. Kvaternaarsete setete all asuvad keskdevoni kihid.
Kvaternaarsed setted: piirkonnas leidub nii jääliustike ja nende vee liikumise tagajärjel tekkinud setteid kui ka biogeenseid turbasetteid. Kvaternaarsete setete paksus varieerub 10– 20 meetri vahel, olles mõnes kohas väiksem või suurem.
Maavarad: tuulepargi ümbruses on turbamaardlaid ja -välju, samuti liiva-, liivakruusa- ja magevee lubjakivi maardlaid. Praegu toimub aktiivne turbakaevandamine Eestis Pätsi soos. Läheduses on ka liiva- ja liivakruusakarjäärid, näiteks Arakste ja Veckabuļi, kus kaevandamine on peatatud. Arvestades kavandatava tuulepargi asukohta lähedalasuvate maavarade maardlate suhtes, ei avalda tuumaelektrijaama ehitamine ja käitamine eeldatavasti negatiivset mõju maavarade maardlatele või prognoositavatele maavarade aladele.
Pinnase ja põhjavee seisukord: põhjavee tase on enamasti kuni 5 meetri sügavusel, kuid võib mõnes kohas olla ka sügavamal. Piirkond on seismiliselt väheaktiivne, maavärinate oht on väike. Kavandatavate tuuleparkide asukohtades tuleb põhjalikult uurida pinnase koostist ja omadusi, et tagada nõuetekohane vundamendi projekteerimine. Olemasolevate geoloogiliste materjalide koondamisel võib järeldada, et kavandatava tegevuse piirkond on ehitamiseks sobiv ja ei ole tuvastatud mingeid insenergeoloogilisi tingimusi, mis välistaksid sinna tuulepargi rajamise.
Veekogud ja melioratsioon: Lode tuulepargi pinnamood varieerub 120 m kuni 140 m üle merepinna. See kõrgusvahemik osutab mõõdukale kaldele, mis võib mõjutada vee voolukiirust. Suhteliselt väike kalle tähendab, et veevoolud on suhteliselt aeglased, kuid tuleb siiski meeles pidada, et suurema kaldega kohtades võib olla suurem erosioonirisk. Kavandatava tuulepargi puhul on pinnaveevool pargi lõunaosast põhja poole, mõjutades peamiselt olemasolevaid hüdroloogilisi võrgustikke. Ümbruskonnas on jõgesid ja soid, aga ka kuivendussüsteeme, mis juhivad vett ära põllumaadelt. Plaanis on ehitada juurdepääsuteid ja kaabelliine, mis ületavad mitut oja. Veekogude ümber on kehtestatud kaitsevööndid, et kaitsta keskkonda ja hoida vee kvaliteeti.
Plaanitud tegevuse raames on kavas teha ehitustöid, mis on seotud kuivendussüsteemide ja nende rajatiste mõne objekti muutmisega: uute drenaažitorude ehitamine ja olemasolevate drenaažitorude rekonstrueerimine, kuivenduskraavide konfiguratsiooni muutmine, uute kuivenduslahenduste ehitamine. Seetõttu tuleb koostada drenaaži ümberkujundamise projekt. Drenaažisüsteemi elementide projekteerimisel ja ehitamisel järgitakse ministrite kabineti 30. juuni 2015 määruse nr 329 „Läti ehitusstandardi LBN 224-15 „Melioratsioonisüsteemid ja hüdrotehnilised konstruktsioonid“ eeskirjade““ nõudeid. Kogu drenaažisüsteemi ümberehitamisega seotud tegevus toimub paralleelselt ehitusplatsi ettevalmistustööde ning juurdepääsuteede ja platside ehitamisega.
Lähimad veevõtukohad ja maa-alused veehoidlad: eeldatavasti ei avalda TEJ-de ehitamine negatiivset mõju veevõtukohtade (puurkaevude), põhjaveekaevude ja põhjavee kvaliteedile ning veetasemele.
Kavandatava tegevuse elluviimine hõlmab ajutist pinnase eemaldamist ning kaevamistöid TEJ-de ja juurdepääsuteede ehitamiseks, käitamiseks ja hilisemaks ala taastamiseks. Iga rajatava TEJ vundamendi lahendus määratakse kindlaks, võttes arvesse pinnase kandevõimet ja põhjavee taseme näitajaid kavandatava tegevuse piirkonnas.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
66
Kavandatava tegevuse piirkonnas toimuva ehitustegevuse ajal on oht, et ehitusmasinate kütuse või määrdeainete lekke korral võib pinnas või põhjavesi reostuda. Nendel aladel, kus ehitusmasinad püsivalt seisavad, kavatseb kavandatud tegevuse algataja võtta ettevaatusabinõud, hinnates enne alade demonteerimist pinnase saastatust, et otsustada eemaldatud pinnase edasise kasutamise üle. Kuigi sellised ettevaatusabinõud ei välista pinnase ja põhjavee saastumise võimalust, tagavad need, et saastunud pinnas, kui seda leitakse, ning ala, kus see asub, puhastatakse õigusaktide kohaselt, vältides saastumise levikut pinnasesse ja põhjavette.
Geoloogia, hüdrogeoloogia (sealhulgas veevõtukohad) ja pinnaveevoolud – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eestis.
4.12. Jäätmekäitlus
Eeldatavalt tekivad tuulepargi ehitamisel nii olme- kui ka tööstusjäätmed. Ehituse, käitamise ja demonteerimise või ümberehitamise käigus tekkivad olmejäätmed kogutakse ja ladustatakse ajutiselt olmejäätmete konteinerites, mis paigutatakse masinate, seadmete ja materjalide ajutiseks ladustamiseks ettenähtud aladele. Kogutud jäätmed antakse üle ettevõtjale, kes on saanud vajalikud load olme- ja ehitusjäätmete veoks ja käitlemiseks.
Jäätmete tekkimist TEJ ehitamise, käitamise ja demonteerimise või ümberehitamise ajal peetakse otseseks negatiivseks keskkonnamõjuks. Arvestades tekkivate jäätmete võimalikku kogust, peetakse mõju väikeseks. Tööstusjäätmete puhul on olemas nii jäätmete ladustamise ja transpordiga seotud esmased mõjud kui ka ressursside tarbimise, jäätmete töötlemise või utiliseerimisega seotud teisesed mõjud. Tekkinud jäätmete taaskasutuse tagamisel oleks mõju kasutatud ressursside ringluse tagamise seisukohalt pöörduv, kuid pöördumatu seoses nende jäätmetega, mida ei saa taaskasutada. Keskkonnamõju hindamisel ei ole kindlaks tehtud vajadust konkreetsete seire- ja keskkonnamõju leevendusmeetmete järele, kui ehitamise, käitamise ja demonteerimise või ümberehitamise käigus tekkivaid jäätmeid käideldakse õigusaktides sätestatud korra kohaselt.
Jäätmekäitlus – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eestis.
4.13. Keskkonnariskid ja hädaolukorrad
TEJ-d on projekteeritud ohutute ja stabiilsete konstruktsioonidena, kuid iga tuuleelektrijaama või tuuleparki peetakse suure riskiga objektiks, mis võib põhjustada õnnetusi või rikkeid tehniliste vigade, ebaõige käitamise ja hoolduse või välistegurite tõttu.
Ministrite kabineti 19. septembri 2017 määruse nr 563 „Suure ohuga objektide tuvastamise ja määramise ning kodanikukaitse ja katastroofide ohjamise haldamise planeerimise ja rakendamise kord“ punkti 2.3.4 nõuete kohaselt on Lode tuulepargi võimsus üle 100 MW ja seetõttu on park liigitatud C-kategooria suure ohuga objektiks, mille tarvis tuleb koostada kodanikukaitseplaan. TEJ kodanikukaitseplaanis tuleb kindlaks määrata tulekahju korral võetavad meetmed, täpsustades tulekahju avastamisel võetavad operatiivsed meetmed, st päästeteenistuste õigeaegne teavitamine ning tulekahju piiramiseks ja likvideerimiseks vajalike ressursside mobiliseerimine.
Olles tutvunud kättesaadava teabega mujal maailmas toimunud õnnetuste kohta TEJ-dega ja teiste riikide soovitustega, on keskkonnamõju hindamisel nende tehnoloogiliste rajatiste
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
67
riskihindamisel tuvastatud järgmised võimalikud ohud. TEJ mehaanilised kahjustused/kokkuvarisemine koos tükkide leviku mõjuga selle läheduses, määrdesüsteemi rikked koos õlilekkega, TEJ tulekahjud ja TEJ rootori labadele jää tekkimine koos hilisema jääpurikate kukkumisega TEJ ümbrusesse. Tänapäeva TEJ-del, kaasa arvatud hinnatud TEJ-de mudelitel, on automaatsed vibratsiooniandurid ja turvasüsteemid, mis lülitavad jaamad teatud vibratsioonitasemele jõudmisel välja. See süsteem suudab tuvastada nii seadme mehaanilisi kahjustusi kui ka jää tekkimist rootori külge. Automaatne väljalülitus on ette nähtud ka muude tegevust iseloomustavate parameetrite piirväärtuste, näiteks rootori kiiruse ületamise korral. TEJ-del on ka suitsu tuvastamise süsteem, mille rakendumise korral käivitub automaatne tulekustutussüsteem. TEJ-del on ka piksekaitsesüsteem.
KMH käigus hinnatakse üksikasjalikult eespool nimetatud riske ja määratakse kindlaks järgmised soovitatavad ohutuskaugused, eeldades, et ehitamiseks valitud TEJ mudel on Vestas V172-7.2:
- 86 m – majandustegevuse piiranguvöönd, kuhu ei ole soovitatav rajada alalisi töökohti (tuginedes rootori läbimõõdule ja rikke tagajärgede otsesele võimalikule mõjule rootori tööalas);
- 252 m – soovituslik kaugus riigi põhimaanteedest (Belgia riskihindamissuuniste soovituste alusel);
- 311 m – soovituslik kaugus riigi ja omavalitsuse teedest, kui ei rakendata tehnilisi lahendusi keskkonnariskide vähendamiseks (põhineb kõige suuremal jää kukkumise kaugusel);
- 707 m – suure ohuga objekti piiranguvöönd (Belgia riskihindamissuuniste soovituste alusel);
- 800 m – kaugus elamutest ja avalikest hoonetest (ministrite kabineti 30. aprilli 2013 määruse nr 240 kohaselt).
Keskkonnariski vähendavate tehniliste lahenduste kasutuselevõtuga saab vahemaad vähendada:
- riigi põhimaanteedeni – 252 m; - omavalitsuse teedeni – 86 m.
Kirjeldatud ohutuskaugused Lode tuuleparki kavandatavate TEJ-de ümber on esitatud joonisel 27.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
68
Joonis 27. Lode tuulepargi ümber olevad ohutuskaugused
Kavandatavate TEJ-de läheduses (lähemal kui 800 m) ei ole elamuid ega avalikke hooneid, mis tagab, et elanikud ei satu TEJ rikke korral otsesesse ohtu.
707 meetri raadiuses kavandatavatest jaama asukohtadest ei ole ühtegi suure ohuga objekti. Ala arendamise jätkamisel ja suure ohutasemega rajatiste paigutamise kavandamisel tuleks arvesse võtta jaamade põhjustatavaid võimalikke ohte.
Legend
Kaart on seotud Läti koordinaatsüsteemi (LKS-92) TM projektsiooniga. Põhjana on kasutatud SIA Jāņa sēta koostatud
digitaalset kaarti JS Baltija.
Tuuleelektrijaam Uurimisala Riigitee Majandustegevuse piiranguvöönd
– 86 m Kaugus riigi põhimaanteedeni – 252 m
Kaugus riigi ja omavalitsuse
teedeni (ilma meetmeteta) – 311 m Suurenenud ohuga objektide
paigutamise piirangu kaugus – 721 m Kaugus elamute ja avalike hooneteni – 800 m Riigipiir
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
69
Koondades saadud teavet riigi ja omavalitsuse teede kohta TEJ-de läheduses, võib järeldada, et 311 m kaugusel TEJ-dest ei ole riiklikke ega piirkondlikke põhiteid, kuid on olemas omavalitsuse teed. Võttes arvesse mõne TEJ kaugust riigi ja omavalitsuse teedest, on põhjendatud kohustuslike tehniliste lahenduste kehtestamine keskkonnariskide vähendamiseks mõnes jaamas (nr L_03, L_05, L_07, L_08, L_09), nimelt jaamade varustamine jää tuvastamise süsteemidega, et tagada jaamade seiskamine jää tuvastamise korral.
Eespool nimetatud kohustuslike meetmete võtmise korral võib soovitatud kaugust riiklikest ja kohalikest teedest vähendada rootori tiiva pikkuse ehk 86 meetrini. Sellisel juhul ei ole ükski jaam lähemal kui soovitatud ohutuskaugus.
Eelnevale lisaks, sealhulgas ettevõtja hallatavatel teedel, on soovitatav kasutada ühte või mitut järgmistest lahendustest20:
- hoiatussiltide paigaldamine jäätükkide kukkumise ohu kohta (vähendab ohtu kuni 10 korda);
- jäätuvastussüsteemiga ühendatud hoiatustulede paigaldamine koos hoiatusmärkidega (vähendab ohtu kuni 100 korda);
- juurdepääsuteede sulgemine füüsiliste tõketega jää tekke korral (vähendab ohtu kuni 100 korda);
- TEJ töö käsitsi käivitamine operaatori kohalolekul.
Mitu TEJ (L_05, L_08, L_10, L_12, L_17) tuulepargis asuvad veekogudele lähemal kui 166 m. Arvestades jaamade lähedust vooluveekogudele, peaks hädaolukordade lahendamise kava sisaldama asjakohaseid meetmeid ja vahendeid kemikaalide leviku ohjeldamiseks ja kokkukogumiseks õnnetuse korral.
Ministrite kabineti 19. septembri 2017 määruse nr 563 „Suurenenud ohuga objektide tuvastamise ja määramise ning kodanikukaitse ja katastroofide ohjamise planeerimise ja rakendamise kord“ kohaselt on Lode tuulepark klassifitseeritud C-kategooria suurendatud ohuga objektiks, mille kohta tuleb koostada kodanikukaitsekava.
Keskkonnariskide ja hädaolukordade hindamine – piiriülene mõju
Ohutuskaugused ei mõjuta Eesti territooriumil asuvat taristut ega tundlikke objekte, kuid kavandatava tegevuse elluviimise korral tuleks naaberpiirkonna omavalitsust teavitada soovitustest piirkonna arendamiseks, võttes arvesse TEJ-dest tulenevat ohtu.
4.14. Sidesüsteemid
Tuulepargid võivad mõjutada elektromagnetiliste signaalide ning raadiosignaalide saatjate ja vastuvõtjate tööd, põhjustades signaalihäireid. Kõige sagedamini mainitakse võimalikku kahjulikku mõju lennuliikluse juhtimiseks kasutatavatele aeronavigatsiooniseadmetele, ilmaradaritele, meresõidu navigatsioonisüsteemidele, elektroonilistele sidevõrkudele ja maapealsetele ringhäälinguvõrkudele.
20 IEA Wind Task 19: International Recommendations for Ice Fall and Ice Throw Risk Assessments (2018)
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
70
Kavandatava tegevuse territooriumile lähimad ilmaradarid on Läti keskkonnageoloogia ja meteoroloogia keskuse (LVĢMC) radar, mis on paigaldatud Riia lennujaama territooriumile, ja Eesti keskkonnaagentuuri radar Sürgaveres. Mõlemad eespool nimetatud radarid asuvad üle 100 km kaugusel kavandatavast tuulepargist. Võttes arvesse ilmaradarite kaugust kavandatavast tuulepargist, ilmaradarite tehnilisi omadusi, asukoha topograafiat ja kavandatavate tuuleparkide kõrgust, ei avalda kavandatavad TEJ-d eeldatavasti märkimisväärset mõju radarite tööle.
Õhuseire radarisüsteeme kasutavad ka riiklikud relvajõud. Radareid Lockheed Martin AN/TPS- 77 kasutatakse õhuruumi jälgimiseks Läti relvajõudude raadiotehnilistes vaatluspunktides asukohtades Čalas (~ 240 km kavandatud tegevuse piirkonnast), Lielvārde (~ 140 km kavandatud tegevuse piirkonnast) ja Audriņi (~ 200 km kavandatud tegevuse piirkonnast). Läti armee kasutab ka mobiilseid radareid TPS-77 MRR. Radareid AN/TPS-77 kasutatakse ka kõigis Leedu vaatluspunktides Antaveršis, Degučiai ja Ceikiškė, samuti Eestis asuvas Kellavere vaatluspunktis. Radareid Thales Ground Master 403 kasutatakse ka Eesti Levalõpme ja Otepää vaatluspunktides. Nii Lockheed Martin TPS-77-seeria kui ka Thales GM400-seeria radaritel on lahendused, mis tagavad nende tõhusa töö ka tuuleparkide vahetus läheduses 21,22. Eespool öeldu põhjal võib järeldada, et kavandatav tuulepark ei saa avaldada olulist mõju relvajõudude tehtavale õhuruumi järelevalvele.
Keskkonnamõju hindamise raames on taotleja konsulteerinud RAS-iga „Latvijas gaisa satiksme“ kavandatava tuulepargi ehitamise kohta Lode valda Valmiera piirkonda. Esialgses hinnangus jõudis RAS „Latvijas gaisa satiksme“ järeldusele, et kavandatav tuulepark asub üle 16-17 kilomeetri kaugusel LGS-i raadionavigatsiooni- ja radariseadmetest ning ei avalda märkimisväärset kahjulikku mõju tsiviillennunduse raadionavigatsiooni või radariseadmetele.
Kaitseministeeriumi teabe „Lätti tuuleparkide arendamise ja kaitsesektori operatiivsete vajaduste kohta“ kohaselt asub Lode tuulepark alas, kus nende rajamine on lubatud ja toetatud ilma kompensatsioonimehhanisme rakendamata.
TEJ-de mõju kohta tehtud uuringud näitavad, et parkide rajamine võib mõjutada tele- ja raadioülekannete ning mobiilside kvaliteeti. Uuringutes mainitakse, et TEJ võib blokeerida, fragmenteerida ja peegeldada nende sideseadmete edastatavaid signaale. Neid häiringuid peetakse ebaolulisteks piirkondades, kus signaali kvaliteet on hea, kuid need võivad olla märkimisväärsed piirkondades, mis asuvad sideseadmete leviala piiril. Kavandatava tuulepargi alal ja selle lähiümbruses edastatakse tasuta ja tasulist maapealset tele- ja raadiolevi, mida pakuvad Valmieras ja Cesvaines asuvad saatjad, mis asuvad Lode tuulepargi uuringualast umbes 50 km kaugusel. Hinnates olemasolevat teavet raadio- ja telelevi kvaliteedi kohta kavandatava tegevuspiirkonna läheduses, võib järeldada, et kavandatava tuulepargi ümbruses on levi kvaliteet praegu hea.
Mobiilside, sealhulgas mobiilse interneti kvaliteeti võivad TEJ-d mõjutada aladel, kus side kvaliteet on halvem. Vaadates Läti suurimate mobiilsidefirmade – LMT, Tele 2 ja Bite – avaldatud teavet levi kvaliteedi kohta kavandatava tegevuspiirkonna ümbruses, on näha, et kavandatava tuulepargi territooriumil ja selle ümbruses on olemas nii 3G kui ka 4G mobiilne
21 https://www.lockheedmartin.com/en-us/products/ground-based-air-surveillance-radars.html
22 https://www.thalesgroup.com/en/ground-master-400
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
71
internet, kusjuures levi kättesaadavust tagab mitu kavandatava tegevuspiirkonna lähedusse ehitatud saatjat. Saatjate ja vastuvõtjate kõrgus on oluline aspekt, mida tuleb arvesse võtta, kui hinnata kavandatava tegevuse võimalikku mõju mobiil- või raadioside (radiolink) kvaliteedile. Mastid, millel asuvad kavandatava tegevuse läheduses mobiilisideseadmed, on enamasti suhteliselt madalad, madalamad kui kavandatava TEJ laba alumine osa. Seega, TEJ kõige olulisem osa, mis võib signaali segada, asub kõrgemal punktist, mis ühendab sidetorni ja teenuse vastuvõtjat.
Side kvaliteedi küsimused ei ole küll otseselt seotud keskkonnamõjudega, ent kui pärast tuulepargi ehitamist tuvastatakse TEJ-de käitamise tulemusena side- ja ringhäälingusignaalide kvaliteedi halvenemine, tuleb võtta meetmed signaali kvaliteedi parandamiseks, mille tehnilised lahendused määratakse kindlaks iga juhtumi korral eraldi.
Sidesüsteemid – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eesti territooriumil asuvatele sidesüsteemidele.
4.15. Sotsiaalmajanduslikud aspektid
Tuulepargi ehitamine ja käitamine võib avaldada nii positiivset kui ka negatiivset sotsiaalmajanduslike aspektidega seotud mõju, mis võib olla spetsiifiline nii konkreetsele tegevuskohale kui ka riiklik. Positiivne mõju hõlmab investeeringuid majandusse, otseselt ja kaudselt seotud töökohtade arvu kasvu, majandustegevuse potentsiaali suurenemist, energiavarustuse suurenemist turul, süsinikdioksiidi heitkoguste vähendamise potentsiaali ja panust riikliku energiapoliitika eesmärkide saavutamisse. Võimalikud negatiivsed mõjud, mida on hinnatud allpool, hõlmavad võimalikke piiranguid majandustegevusele, mõju kinnisvara väärtusele ning mõju turismi- ja puhkeressurssidele.
Lode tuulepargi koguinvesteeringu suurus on eeldatavasti ligikaudu 450 miljonit eurot. Seetõttu tuleks kavandatava tuulepargi ehitamist vaadata kui märkimisväärset investeeringut Läti energiasektorisse võrreldes viimaste aastate investeeringute mahuga. Oluline aspekt, mida tuleb kavandatava tegevuse majandusmõju hindamisel arvesse võtta, ei ole mitte ainult investeeringute kogusumma, vaid ka investeeringuga seotud töökohtade arvu kasv. Tööhõivet silmas pidades tähendab tuulepargi rajamine töökohtade loomist nii ehituse kui ka käitamise ajal. Nõudlus lisatööjõu järele on seotud nii tuulepargi ehitamise ja käitamisega kui ka sellega kaudselt seotud tegevusega, nagu näiteks tee-ehituseks vajalike materjalide kaevandamine, betooni tootmine, transporditeenused, majutus ja toitlustamine.
Kavandatava tegevuse elluviija prognoosib, et kavandatava tuulepargi TEJ-de toodetud energia
kogus võib olla vahemikus 375–594 GWh elektrienergiat aastas. Tuulepargi rajamine ei mõjuta
palju elektrihinda Lätis, kuna kavandatava tegevuse mahtu NordPooli piirkonna kontekstis
hinnatakse tühiseks, ent iga projekt, mis hõlmab uute tootmisvõimsuste rajamist, võib pikemas
perspektiivis aidata kaasa pakkumise suurenemisele turul, mis võib mõjutada tarbijate poolt
elektrienergia kasutamise eest makstavat hinda. Kokkuvõttes aitab Lode tuulepargi kavandatav
ehitus kaasa Läti riiklikele eesmärkidele, mis on seotud taastuvenergia tootmise ja
kliimaneutraalsusega.
Keskkonnamõju hindamise aruandes analüüsiti seni tehtud uuringuid tuuleparkide mõju kohta kinnisvara väärtusele. Tehtud uuringute analüüsi käigus ei leitud ühtegi uuringut, milles oleks leitud kinnisvara turuväärtuse positiivset muutust vahetult pärast tuuleparkide rajamist.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
72
Tulemused näitavad, et tuulepargi lähedal asuva kinnisvara turuväärtust võivad mõjutada konkreetsed tegurid: kaugus tuulepargist, TEJ-de kõrgus, nähtavate jaamade arv, tuulepargi lähedal asuva maastiku kvaliteet, kinnisvara kvaliteedinäitajad, tuuleparkide koguarv piirkonnas, avalikkuse suhtumine tuuleenergiaprojektidesse jne. Mitmes uuringus on leitud, et tuuleparkide mõju kinnisvara väärtusele on pigem kinnisvara väärtuse tõusu pärssiv kui seda otseselt vähendav. Kuigi olemasoleva teabe põhjal ei ole võimalik kvantifitseerida mõju suurust Lätis, võib isegi siis, kui hinnata teistes riikides tehtud uuringutes tuvastatud halvima stsenaariumi korral toimuvate muutuste suurust, järeldada, et kavandatava tuulepargi võimalik mõju kavandatava tegevuse läheduses asuva kinnisvara turuväärtusele on võrreldav teiste riigis toimuvate protsesside põhjustatud muutustega eluasemekinnisvara turuväärtuses.
Kavandatav tuulepark võib avaldada negatiivset mõju turismi ja puhkusega seotud majandustegevusele. Praegu on suhteliselt raske prognoosida kavandatava tuulepargi majanduslikku mõju lähedalasuvatele puhkealadele, sest Lätis puuduvad sellised uuringud. Tutvudes teistes Euroopa ja maailma riikides tehtud uuringutega, võib järeldada, et:
- uuringutes, mille käigus küsitleti puhkerajatiste külastajaid enne kavandatud tuuleparkide rajamist, märkis osa külastajad, et nad ei külastaks neid rajatisi pärast parkide rajamist;
- uuringud, milles analüüsitakse puhketeenuste klientide arvu võimalikku vähenemist pärast tuuleparkide rajamist, ei näita, et TEJ-de rajamine oleks avaldanud märkimisväärset negatiivset mõju puhkekohtade käibele.
Mõnel juhul näitavad uurimistulemused, et tuuleturbiinidest teadlikud turistid oleks valmis maksma rohkem, et elada puhkuse ajal kohas, kus on vaade rannikuäärsele tuulepargile, ning nad hindasid tuuleparkide arendamist positiivselt. Samuti leidub uuringuid tuuleparkide läheduses elavate inimeste kohta, kes on loonud tuuleparkide taristule uusi ja ainulaadseid kasutusviise ning suhtuvad sedasorti arengutesse positiivselt. Samal ajal on teised uuringud näidanud, et seal, kus loodus- ja maastikupõhine turism on kohaliku majanduse jaoks eriti oluline, võib tuuleparkide arendamine muutuda konkureerivaks maakasutusviisiks. Uuringute tulemusi kokku võttes võib järeldada, et tuuleparkide tajumisel on oluline osa sellistel teguritel nagu kavandatava piirkonna olemasolev kasutusviis (muutmata keskkond või majanduslikult arenenud piirkond), tuuleparkide nähtavus, kaugus tuulegeneraatoriteni ja nende hulk, inimeste teadmiste ja informeerituse tase tuuleparkide ja taastuvenergia mõjust üldiselt.
Tuleb märkida, et elektrituruseaduse muudatuste kohaselt, mis jõustusid 1. jaanuaril 2023, peab tuuleelektrijaama paigaldaja või omanik, kui selle paigaldatud võimsus on vähemalt üks megavatt, maksma kohalikule kogukonnale igal aastal kompensatsiooni tuuleelektrijaama põhjustatud ebamugavuste talumise eest iga elektrijaama koguvõimsuse alusel alates elektrijaama kasutuselevõtust. Tuulegeneraatorite põhjustatud ebamugavuse hüvitis kohalikule kogukonnale makstakse täielikult selle omavalitsuse eelarvesse, mille territooriumil elektritootmisrajatis asub või kuhu see paigaldatakse. See tähendab, et omavalitsuse ja piirkonna elanikud saavad otsest rahalist kasu, mis aitab kaasa nende elukvaliteedi ja maksevõime tõusule, suurendades seega kohalikku tarbimist, mis omakorda parandab kohalikku ettevõtluskeskkonda ja võib avaldada positiivset mõju kinnisvaraturu väärtusele.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
73
Lode tuulepark hõlmab ka sellega seotud taristut (kaabelliini) Eesti territooriumil, kuid selle mõju hinnatakse eraldi. Üldiselt eeldatakse, et Eesti territooriumil on kavandataval tegevusel (st Läti territooriumile rajatavatel tuuleturbiinidel) sarnane mõju sotsiaalmajanduslikele aspektidele ning asjasse puutuvatele pooltele kohalikul ja riiklikul tasandil, nagu on kirjeldatud käesolevas punktis Läti territooriumi puhul, st märkimisväärset negatiivset mõju sotsiaalmajanduslikele aspektidele ei ole oodata.
Sotsiaalmajanduslikud aspektid
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eesti territooriumil asuvatele sotsiaalmajanduslikele aspektidele.
4.16. Vibratsioon
Lätis ei ole TEJ-de põhjustatud vibratsioonitaset ja selle mõju lähedal olevatele territooriumitele õiguslike piirangutega piiratud. Kuni 30. juunini 2010 olid vibratsiooni piirväärtused sätestatud ministrite kabineti 25. juuni 2003 määruses nr 341 „Reeglid vibratsiooni lubatud väärtuste kohta elamutes ja ühiskondlikes hoonetes“ (edaspidi: MK määrus nr 341).
Võrreldes TEJ-de põhjustatavat vibratsiooni Lätis kuni 30. juunini 2010 kehtivate vibratsiooni piirväärtustega, on näha, et TEJ-de vibratsioonitase nende vahetus läheduses on piirväärtustest kõrgem, kuid vibratsioonitasemed juba 300 m kaugusel TEJ-dest on palju väiksemad kui väikseim piirväärtus, mida rakendatakse raviasutuste operatsioonisaalide ning ravi- ja rehabilitatsiooniasutuste palatitele (öösel). Kuigi praegu puuduvad uuringud keskkonnamõju hindamise käigus hinnatud TEJ mudelite vibratsioonitasemete kohta, ei ole põhjust arvata, et kavandatava tuulepargi vibratsioonitasemed oleksid märkimisväärselt kõrgemad ja kujutaksid endast ohtu tervishoiule, arvestades, et TEJ-de mehaanilistele osadele on kehtestatud piirväärtused olenemata TEJ mudelist ja selle võimsusest. Teisisõnu, TEJ vibratsiooni mõju ühiskonnale hinnatakse tühiseks.
Vibratsioon – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eesti territooriumil.
4.17. Elektromagnetväljade mõju
Elektri laialdane kasutamine tänapäeval tööstuse, transpordi, majapidamise, traadita side, raadio, televisiooni, radarite ning diagnostika ja ravi valdkondades lisab meie keskkonda täiendavaid elektri-, magnet- ja elektromagnetvälju. Nende väljade hulka kuuluvad ka Maa magnetväli, looduslikud elektriväljad, kosmilised magnettormid, raadiolained ning infrapuna- ja ultraviolettkiirgus.
Alates 1. novembrist 2018 kehtib Lätis ministrite kabineti määrus nr 637 elektromagnetvälja mõju hindamise ja piiramise kohta, millega võetakse üle Euroopa Nõukogu 1999/519/EÜ soovitused. Selle määrusega on 50 Hz sagedusega magnetvälja piirväärtus 100 µT. Tuulepargi ja maakaablisüsteemi ehitamise tõttu on peamised elektromagnetväljade allikad vähemalt 150 m kõrgusel asuva TEJ gondli voolugeneraator ja trafo ning TEJ gondli ja torni aluse vahel olev elektrikaabel. Varjestatud kolmejuhtmelised kaablid tagavad, et magnetväli 20 cm raadiuses kaablist ei ületa 3–9 μT. Selliseid magnetvälja väärtusi peetakse tühiseks, kuna TEJ läheduses ei viibi alaliselt inimesi.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
74
Arvutused näitavad, et TEJ-st alajaamani kulgev maakaablivõrk tekitab minimaalse magnetvälja, kuna kaablid on maetud sügavale ja magnetvälja suurust vähendatakse optimaalselt. Välja suurus oleneb selles liikuvast voolust ja kaabli sügavusest. Varjestatud kolmejuhtmeliste kaablite kasutamine peaaegu kõrvaldab väljapoole ulatuva elektrivälja ja kõrgem pinge vähendab kaablitrasside kohal magnetvälja.
Arvutused näitavad, et magnetvälja voolutiheduse väärtused maakaablite kohal ei ületa sihtväärtusi isegi halvima stsenaariumi korral. Tegelikus elus ei tööta TEJ-d kogu aeg maksimaalsel võimsusel, seega on magnetvälja tase enamasti veelgi väiksem. Ministrite kabineti määruses on sätestatud, et inimene võib sellises magnetväljas viibida ohutult 24 tundi ööpäevas, ilma et see avaldaks tervisele kahjulikku mõju. Tuulepargi piirkonnas ei ole elamuid ja inimeste pidev kohalolek ei ole kavas.
Tuulepargi töö käigus tekkivad elektromagnetväljad ei ole isegi tuulepargi maksimaalse töö korral sellised, mis võiksid jätta märkimisväärse mõju tervishoiule tervikuna või tuulepargi ümbruses elavate inimeste või maakaablitrasside ääres asuvate teede kasutajate tervisele. Sellised elektromagnetväljad ei häiri ka erinevate seadmete, sealhulgas spetsiifiliste meditsiiniseadmete tööd, mis hoiavad inimelu ja on valmistatud suure kaitsega magnetväljade mõju vastu.
Kokkupuude elektromagnetväljadega – piiriülene mõju
Keskkonnamõju hindamise käigus ei ole tuvastatud võimalikku piiriülest mõju Eesti territooriumil.
5. KAVANDATAVAT TEGEVUST PIIRAVAD ASJAOLUD JA LAHENDUSED KESKKONNAMÕJU VÄHENDAMISEKS
Keskkonnamõju hindamise aruandes on kindlaks määratud kavandatud tegevust piiravad tegurid, millest oleneb tegevuse elluviimise võimalikkus konkreetsetes väljavalitud kohtades.
Ministrite kabineti 30. aprilli 2013 määruse nr 240 „Territooriumi ruumilise planeerimise, kasutamise ja ehitamise üldeeskiri“ punkti 163 kohaselt peab üle 2 MW võimsusega TEJ asukoha planeerimisel olema lähima planeeritava TEJ ja tuulepargi piiri kaugus elamutest ja ühiskondlikest hoonetest vähemalt 800 m. TEJ-de L_16A ja L_17A ehitamine alternatiivina TEJ-dele L_16 ja L_17 on lubatud, kui maja Inčkalni (katastritunnus 96680010088) suhtes on saavutatud kokkulepe lammutamiseks ning kirjete kustutamiseks katastrist ja kinnistusraamatust.
Kavandatavat tegevust piiravad tegurid on seotud TEJ L_01 ehitamisega. Praeguse planeeringu kohaselt mõjutab TEJ L_01 ehitamine kaitsealuse ohakasoomuka Orobanche pallidiflora (O.reticulata) kasvukohta. Ekspertide hinnangul ei ole eespool nimetatud ehitusala rajamine toetatav. Ehitusala soovitatakse viia lõunasse, ohakasoomuka kasvukohast välja.
Hinnates keskkonnaaspekte, mis on seotud kavandatava tegevuse mõjuga rahvatervisele (keskkonnamüra, varjutus), tuvastati, et teatavate tehnoloogiliste alternatiivide valik võib põhjustada keskkonnaseisundi muutusi, mis ei vasta Lätis kehtestatud või keskkonnamõju hindamisel kasutatud ja teiste riikide eeskirjades olevatele keskkonnakvaliteedi piirväärtustele.. Kuigi nende mõjude leevendamiseks on olemas tehnoloogilised lahendused,
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
75
peetakse kavandatavatest leevendusmeetmetest keeldumist kavandatava tegevuse elluviimisel piiravaks teguriks.
Konkreetsete TEJ-de ehitamisel peaks algataja võtma ka leevendusmeetmed ornitofauna, nahkhiirte, ELi tähtsusega elupaikade ja muude loodusväärtuste ning maastiku- ja kultuurilooliste väärtuste säilitamiseks. Täpsem teave mõju kvantitatiivsete näitajate ja selle leevendamisvõimaluste kohta on esitatud aruande 4. peatükis. Aruande tabelis 6.1.2 on esitatud kokkuvõte võimalike oluliste mõjude ja nendega seotud leevendusmeetmete kohta.
Planeeritaval alal kavandatav tegevus on üldiselt kooskõlas Valmiera omavalitsuse säästva arengu strateegias määratud ringmajanduse valdkonnaga – energiatootmisega. Kavandatava tuulepargi ala hõlmab maaüksusi, mille lubatud kasutusviis ei näe ette energiatootmisettevõtete või -rajatiste ehitamist. Ühtlasi sätestab TIAN23, et vabalt seisev rajatis, näiteks tuulegeneraator, peab paiknema krundil nii, et kaugus krundi piirist ei oleks väiksem kui rajatise maksimaalne kõrgus, mistõttu tuleb planeeritava Lode tuulepargi rajamiseks koostada kohalik planeering ning kehtestada selle alale uued territooriumi kasutamise ja ehitamise eeskirjad, millega muudetakse lubatud maakasutustüüpi, et see võimaldaks tuuleelektrijaamade rajamist, tühistades ka tingimused, mis käsitlevad kindlaksmääratud kaugusi krundi piirini, või neid muutes.
24 31. augustil 2023 võttis Valmiera vallavolikogu vastu otsuse nr 430 „Lode tuulepargi kohaliku planeeringu koostamise algatamise kohta Lode valda Valmiera piirkonnas, millega muudetakse Rūjiena valla ruumilist planeeringut 2012–2024“, millega algatati valla kohaliku planeeringu koostamine Lode tuulepargi territooriumile jäävale 22 maaüksusele.
Tuleb märkida, et potentsiaalsed asukohad TEJ-de jaoks on soovituslikud, tuginedes praegu olemasolevale teabele, ja neid võib täpsustada kinnistu piirides ehitusprojekti koostamise ajal. Sellisel juhul tuleks ehitusprojekti koostamise käigus tagada, et kavandatud muudatused ei mõjutaks teadaolevaid loodusväärtusi, ning juhul, kui valitud lahendus erineb selles aruandes hinnatud lahendusest, tuleks uuesti hinnata mõju asukoha muutmisest olenevatele aspektidele, nagu varjutusefekti mõjuaja arvutused, mõjutatud hoonestatud alade kindlaksmääramine ja jaamade seiskamisrežiimide väljatöötamine. TEJ-de asukohtade muutmise ja muudatustega seotud mõjude ümberhindamisel võib tuvastada piiravaid lisategureid muudetud kavatsuste elluviimisel.
6. KAVANDATAVA TEGEVUSE ALTERNATIIVIDE VÕRDLUS
KMH raames hinnati asukoha ja tehnoloogilisi alternatiive.
Asukoha alternatiivide hinnang
Senine kogemus tuuleparkide kavandamisel Lätis näitab, et esialgsete asukohaalternatiivide määramine ja neist igaühe hindamine ainsa võimalusena ei ole ratsionaalne. KMH käigus tuvastatakse sageli asjaolusid, mis nõuavad esialgsete alternatiivide muutmist või muudetud lahenduste loomist. Mitme alternatiivi võrdlemisel leitakse sageli, et parim lahendus ei ole
23 TIANi punkt 25.1.3
24 https://www.valmierasnovads.lv/attistiba/teritorijas-planosanas-dokumenti/lokalplanojumi/pazinojums- par-lokalplanojuma-kas-groza-rujienas-novada-teritorijas-planojumu-2012-2024-gadam-veja-parks-lode-lodes- pagasta-valmieras-novada-izstrades-uzsaksanu/
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
76
valida ühte jaama kõigisse asukohtadesse, vaid valida eri alternatiivide hulgast mitu erinevat jaama (nt Vērgale ja SELPi tuuleparkide puhul).
Lode tuulepargi keskkonnamõjude hindamisel andsid jaamade esialgsele paigutusele hinnangu looduseksperdid, kuna nende hinnang mõjutab jaamade asukohta kõige enam. Füüsikalisi mõjusid, nagu müra ja varjutust, leevendatakse pigem tehnoloogiliste meetmetega kui jaamade ümberpaigutamisega. Enne keskkonnamõjude hindamise aruande koostamist analüüsiti erinevaid võimalusi TEJ-de ja vajaliku taristu asukoha leidmiseks, et vältida erikaitselisi elupaiku, liikide leiukohti ja muid loodusväärtusi.
Hindamise alguses vaadati suuremat hulka TEJ-sid, kuid mõnest neist tegevuse algataja loobus, tuginedes ekspertide järeldustele võimalike negatiivsete mõjude kohta, mida ei ole mingisuguste meetmete abil võimalik leevendada või kompenseerida. Aruande peatükis 3.3 kirjeldatakse hinnatud alternatiive ja valitud lahendust, mis hõlmab kuni 19 TEJ ehitamist uuringupiirkonda. Kuigi selline plaan vähendas võimalikke konflikte loodusväärtuste kaitse seisukohast, ei ole isegi valitud lahendus ideaalne, nagu võib lugeda ornitofaunale avalduvat mõju käsitlevas peatükis. Aruande tabelis 3.1.3 on esitatud kokkuvõte aspektidest, mida hinnati seoses asukoha alternatiividega. Peatüki lõpus on lühihinnang alternatiividele. Aruande tabelis 6.1.2 on esitatud kokkuvõte keskkonnamõjude leevendamise või vältimise meetmetest.
Tehnoloogiliste alternatiivide hinnang
Keskkonnamõju hindamise käigus analüüsiti nelja TEJ mudelit ja eri tüüpi rootori labasid. Tehnoloogilisi alternatiive tasub võrrelda alles pärast leevendusmeetmete võtmist, mida peetakse kavandatava tegevuse elluviimise kohustuslikuks eelduseks. Maastikukaitse, keskkonnariskide, sidesüsteemidele avaldatava mõju ning lindude ja nahkhiirte populatsioonidele avaldatava mõju kontekstis hinnatakse kõiki tehnoloogilisi alternatiive samaväärseteks või mitte märkimisväärselt erinevateks.
Kõige olulisemad erinevused on seotud füüsikalise mõjuga tervishoiule, nimelt jaamade tekitatava müra ja varjutuse mõjuga. Müra mõju on oluline ka ornitofaunale.
KMH protsessis ei ole kindlaks määratud ühtegi tehnoloogilist alternatiivi kui tegevuse elluviimist piiravat tegurit, tunnistades, et turul saadaolevad jaamad võivad erineda ning et tegevuse algatajal on õigus valida mõni muu mudel, tingimusel et see ei ületa kindlaksmääratud keskkonna kvaliteedi piirväärtuseid. Isegi halvima alternatiivi puhul on mõju leevendamiseks olemas tehnoloogilised lahendused.
Kavandatava tegevuse algataja peaks võtma arvesse KMH protsessi järeldusi ja tegevuse elluviimiseks seatud tingimusi tulevases planeerimisprotsessis, valides tehnoloogilise alternatiivi, mis vastab riiklikele keskkonna kvaliteedi normidele või aruandes hinnatud piirväärtustele.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
77
7. TINGIMUSED KAVANDATAVA TEGEVUSE EDASISEKS JÄRELEVALVEKS KESKKONNAMÕJU KONTEKSTIS
Keskkonnamõju hindamise käigus on hinnatud kavandatava tuulepargi võimalikku mõju. Mõju, näiteks TEJ varjutusefekti, mürasaastet, turvariske ning mõju elupaikadele ja kaitstavatele taimeliikidele, on võimalik prognoosida suure täpsusega, hinnates kavandatava tegevuse ulatust ja kasutades arvutusmeetodeid. Kahjuks on peaaegu võimatu hinnata kavandatava tuulepargi täpset mõju ornitofaunale ja nahkhiirte populatsioonidele, mistõttu tuleks kavandatava tuulepargi mõju eespool nimetatud loomarühmadele hinnata ka edaspidi, tehes seiret ja vajaduse korral võtta täiendavad, keskkonnamõju hindamise aruandes täpsustamata leevendusmeetmed. Üksikasjalik seireprogramm tuleks välja töötada enne ehitustööde alustamist, kuid pärast seda, kui on valitud jaamade lõplikud asukohad ja mudelid. Seireprogramm tuleb kooskõlastada looduskaitseametiga.
Mõju nahkhiirtele
Nahkhiirte seire tagatakse esimesel ja teisel aastal pärast tuulegeneraatorite töö alustamist. Seiremetoodika töötab välja ja viib ellu looduskaitseameti litsentsitud nahkhiireekspert, võttes arvesse koha eripärasid. Järelevalvemetoodika hõlmab järgmist:
- akustiline seire maapealsete ultraheliandurite ja vähemalt nelja turbiini gondlitesse paigaldatud automaatsete ultraheliandurite abil, et registreerida pidevalt nahkhiirte aktiivsust vähemalt 1. aprillist kuni 31. oktoobrini. Automaatsed detektorid tuleb paigaldada ühele turbiinile metsas, ühele avamaal ja kahele metsaelupaikades;
- surnud nahkhiirte loendamine vähemalt nende turbiinide juures, kus toimub akustiline seire (võimaluste piires võib uuritavate turbiinide arvu suurendada). Surnud nahkhiirte otsinguid peaksid tegema koolitatud otsijad koos otsingu tõhususe ja korjuste kadumise aja kontrollimisega.
Surnud nahkhiirte otsimise hõlbustamiseks tuleks tuulegeneraatorite aluste ümber rajada vähemalt 50 m raadiuses taimestikust vaba pind või tagada seireperioodi jooksul regulaarne rohu niitmine. Metsadesse paigaldatavate turbiinide korral ei ole 50 m raadiusega riba metsa lisaraiumisega tarvis luua.
Ornitofaunale avaldatava mõju seire Arvestades määramatust tuuleparkide mõju hindamisel lindudele, on oluline teha põhjalik seire. Seireprogramm tuleb välja töötada enne ehitustööde algust, kaasates ornitolooge, statistikaeksperte ja muid huvirühmi, ning see tuleks kooskõlastada looduskaitseametiga. Seiret tuleks alustada vähemalt üks aasta enne ehitust, et ajakohastada andmeid linnuliikide ja nende aktiivsuse kohta territooriumil. Seiret tuleks jätkata ehitamise ajal, pöörates erilist tähelepanu häirimise suhtes tundlikele liikidele. Pärast pargi rajamist tuleb seiret teha vähemalt kuus aastat, vajaduse korral võib looduskaitseamet seda perioodi pikendada.
Pärast tuuleparkide käivitamist tuleks surnud lindude üle pidada arvestust, kasutades fotolõksu ja automaatseid kokkupõrkeandureid. Seire peaks hõlmama ka valgeselg-kirjurähni, värbkaku ja tikutaja liike, et hinnata tuulepargi tekitatud müra ja muude tegurite mõju. Seiretulemused võivad osutada vajadusele lisaleevendusmeetmete järele, kui tegelik mõju on esialgu prognoositust suurem.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
78
8. AVALIKKUSE KAASAMINE
Covid-19 nakkushaiguste ohjamise seaduse (kehtis 10. juunist 2020 kuni 31. detsembrini 2023) kohaselt toimus 18. septembrist kuni 11. oktoobrini 2023 esimene avalik arutelu keskkonnamõju hindamise üle (distantsilt).
Teade esialgse avaliku arutelu kohta avaldati ajalehes Liesma 15. septembril 2023 ja Valmiera omavalitsuse teabeväljande septembrikuu numbris 9 (27), mis ilmus 18.09.2023, samuti Valmiera piirkonna omavalitsuse, riigi keskkonnaameti ja aruande koostaja SIA Estonian, Latvian & Lithuanian Environment veebilehtedel. Kavandatava tegevuse esialgsest avalikust arutelust teavitati individuaalselt nende kinnistute omanikke (haldajaid), kelle kinnistud asusid tuulepargi uuringualal või piirnesid sellega.
Esialgne avalik arutelu kavandatava tegevuse üle toimus veebipõhise videokonverentsi teel 2. oktoobril 2023 kell 18.00. Esimesel avalikul arutelul osales kokku 33 osalejat.
Osalejaid teavitati keskkonnamõju hindamise peamistest eesmärkidest, mille hulka kuuluvad mõjude kindlakstegemine ja nende hindamine, alternatiivide kindlakstegemine ning hinnatud mõjude leevendamine või vältimine. Samuti teavitati kavandatava tuulepargi asukohast, hulgast, mõõtmetest ja võimaliku asukoha valikukriteeriumidest. Osalejatele esitati teave eeldatavate mõjude kohta ehitamise ajal (sealhulgas kohalike teede kasutamise ja võimaluse kohta kasutada tuulepargi ala jahiseltsil) ning mõjude kohta tuulepargi käitamise ajal (sealhulgas kinnisvaramaksu suuruse, alajaama mürataseme ja tuulepargist saadavat kasu kohta vallale, ümbruskonnale ning kohalikele elanikele, nagu näiteks talumistasu omavalitsusele jms.
SIA Estonian, Latvian & Lithuanian Environment Lode tuulepargi rajamise keskkonnamõju hindamise aruande kokkuvõte
Versioon avalikuks aruteluks
79
Lisa.
Maastikueksperdi arvamus
Tartu 2024
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
Maastikuarhitekt-ekspert: Heiki Kalberg
Tellija: SIA Estonian, Latvian & Lithuanian Environment
Töö nr: 24024MT3
Kuupäev: 26.03.2024
AB Artes Terræ
©AB Artes Terrae OÜ 2024
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 3 / 20
Sisukord
1 Sissejuhatus .......................................................................................................................... 5
2 Väärtuslikud maastikud ......................................................................................................... 5
2.1 Maakondliku (ka võimalik riikliku) tähtsusega I klassi väärtuslik maastik Halliste org Abja ja
Karksi-Nuia vahel ................................................................................................................................. 6
2.2 Maakondliku tähtsusega I klassi väärtuslik maastik Majori talu ............................................. 9
2.2.1 Kohaliku tähtsusega II klassi väärtuslik maastik Halliste org Saapakülast Kariste järveni
11
2.3 Kangru küla ............................................................................................................................ 13
2.4 Penuja, Abja-Paluoja - Läti piiri tee ....................................................................................... 15
2.5 Lilli- Ruhijärve maastik .......................................................................................................... 18
3 Mõju maastikule, kokkuvõte ............................................................................................... 20
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 5 / 20
1 Sissejuhatus
Töö eesmärgiks on Eesti volitatud maastikuarhitekti hinnang Lätis Lode piirkonda planeeritava
tuulepargi visuaalsele mõjule. Töö on koostatud SIA “Estonian, Latvian & Lithuanian Environment”
tellimuse keskkonnamõju hindamise juurde.
Töö koostamisel on võetud aluseks väärtuslike maastike metoodika1, kehtiv maakonnaplaneering ja
selle sidusmaterjal, koostatav Mulgi valla üldplaneering, metoodika Tuuleparkide rajamisest tulenev
visuaalne muutus2, välitöödel kogetu ja tellija poolt keskkonnamõju hindamise protsessis koostatud
visualiseeringud.
Töö on koostatud eesti keeles ja hiljem tõlgitud, võimalike vastuolude korral tuleb lähtuda
eestikeelsest versioonist.
2 Väärtuslikud maastikud
Eestis on paari viimase kümnendiga välja kujunenud väärtuslike maastike määramine. Algselt määrati
väärtuslikud maastikud maakondade kaupa maakonnaplaneeringu tasandil. Sellele järgnevalt
täpsustasid kohalikud omavalitsused üldplaneeringutes väärtuslike maastike piire ja tingimusi ning
vajadusel määrasid täiendavad väärtuslikud maastikud. Lisaks väärtuslikele maastikele on määratud
kauni vaatega teelõigud. Väärtuslike maastike määramisel on eesmärgiks kõrgema väärtusega
maastike väärtuste säilitamine ja parendamine.
Maastiku väärtusi hinnatakse kolme palli skaalal: madal või ebaselge; keskmine või ebaühtlane; kõrge
väärtus.
Väärtuslikel maastikel on järgnevad viit tüüpi väärtused:
▪ kultuurilis-ajalooline väärtus;
▪ esteetiline väärtus;
▪ looduslik väärtus;
▪ identiteediväärtus;
▪ rekreatiivne ja turismipotentsiaal ehk puhkeväärtus.
Seisukoha kujundamisel vaadatakse üle üldplaneeringu eelnõu kohased väärtuslikud maastikud ja
hinnatakse mõju nendele.
1 K. Hellström, H. Alumäe, A.Palo, H. Palang, K. Sepp, A.Koppelmaa. 2001. Väärtuslike maastike määratlemine. Metoodika ja kogemused. Hiiumaa-Tartu-Viljandi. 2 A.Tara. 2022. DVC as a Supplement to ZVI: Mapping Degree of Visible Change for Wind Farms. https://www.researchgate.net/publication/362429091_DVC_as_a_Supplement_to_ZVI_Mapping_Degree_of_ Visible_Change_for_Wind_Farms. Vaadatud 20.02.2024
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
6 / 20 AB Artes Terræ
Joonis 1. Väärtuslikud maastikud, visuaalne mõju ja fotopunktid. Tuuleparki kavandatakse keskel olevale punasele ovaalsele alale.
2.1 Maakondliku (ka võimalik riikliku) tähtsusega I klassi väärtuslik maastik Halliste org
Abja ja Karksi-Nuia vahel
Joonis 2. Väljavõte maakonnaplaneeringust.
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 7 / 20
Ala on üks suuremaid väljavalitutest ning hõlmab Halliste jõe orgu koos seda ääristava suhteliselt
tasase ja lainja põllumajandusmaastikuga Abjast Karksi-Nuiani. Tegemist on tüüpilise suurpõldude
piirkonnaga, loodusmaastikku esindab vaid Halliste jõe org, mille nõlvad on enamasti võsastunud või
metsaga kaetud, kuid Abja pool leidub ka veel avatud lamminiitu. Suurem jõkke suubuv oja on Pöögle
(Lopa) oja. Osalt leidub orus ja orunõlvadel ka vanemaid metsaalasid ja -ribasid. Siin on olnud arvukalt
mõisaid (Abja, Pornuse, Pöögle, Kaubi). Valdav asustusmuster on siin hajatalud, kuid tuntakse ka
mõningaid külanimetusi – Allaste, Leeli, Univere, Mäkiste. Halliste kihelkonna jõukad talunikud ehitasid
sageli uhkeid elumaju ehk “häärbereid”.
Ala põldudemuster on hästisäilinud, põllud enamasti kasutuses, kuid leidub ka võsastuvaid põlde.
Nõukogude perioodi maaparanduse mõju on näha vaid detailides - kadunud niidutükid, puudesalud ja
talukohad, lisandunud paisjärved. Teedevõrk eriti hästi säilinud orust põhja pool, seevastu Karksi-Nuia
– Abja tee on 2000. algul sirgeks aetud ja uuendatud. Tee ääres palju hooldatud kuusehekke ja
puuderühmi.
Abja mõisast on säilinud klassitsistlik peahoone, mõned kõrvalhooned, osaliselt hooldatud
maastikupark ja puiesteed. Kunagine tiikide süsteem on hävinud. Kaubi (Uue-Pornuse) mõisast on alles
peahoone ja lagunevaid kõrvalhooneid. Pöögle ja (Vana-) Pornuse mõisad on varemetes.
Ala sisse jääb Halliste kirik koos kalmistuga ja kenade traditsiooniliste puumajadega Kulla asula. Kulla
asulas paikneb liigirikas Halliste dendropark – endine koolipark. Paisjärved ja Kassepa veehoidla
ümbritseva metsavööga rikastavad maastikupilti.
Kõrge kultuurilis-ajalooline väärtus: kunagine mõisamaastik, hiljem talumaastik hästisäilinud
põllukontuuridega; osaliselt säilinud mõisasüdamed; suures ulatuses on säilinud talukohad; alal leidub
kolhoosiaegseid tootmishooneid, kuid puuduvad suured majandikeskused; ala on seotud paljude
Kitzbergi jutustustega; Abja kandist osteti päriseks esimesed talud; kultuurimälestised: kalmistu ja
ohvrikivi Leeli külas; kaks kalmistut Univere külas; kaks külakoolihoonet Pöögles.
Kõrge esteetiline väärtus: põhiväärtuseks on avarad vaated orule ja haritud põldudele eriti oru
põhjakaldalt Polli ja Pornuse vahel, Kulla asulast läänes ning Pornuse mäelt mõisavaremete ligiduses;
ka Karksi-Nuia – Abja vaheline maantee pakub ilusaid vaateid ümbrusele, Pöögle kandis ka
paisjärvedele, kahjuks on Pöögle paisjärve ja maantee vaheline põld metsastatud. Uus maantee
seostub kohati halvasti maastikuga.
Keskmine looduslik väärtus: piiritletud lõigul on Halliste jõgi ja Pöögle oja säilitanud oma lookleva
sängi; väärtuslikud on vanemad metsatukad; veel võsastumata luhad, suurim neist Pöögle-Abja luht;
liivakivipaljandid (Mäkiste põrguhaud, Lopa põrgu, Abja mõisa paljand); paisjärved.
Kõrge identiteediväärtus: kõrge nii kohalikul kui maakondlikul tasandil.
Keskmine puhkeväärtus: ilus maastik läbisõiduks, peatumiseks pole aga eriti põhjust; endised
mõisakeskused atraktiivselt ei mõju; Abja ja Kaubi mõisatel on kõige enam arengupotentsiaali; alal
asuvad vanemad metsad ja paisjärved on kohaliku rekreatiivse väärtusega.
Kavandatava tuulepargi visuaalne mõju on oru põhjakaldal vähene või väheoluline. Valga-Uulu
maanteest lõuna poole esineb ka olulist visuaalset mõju3. Läbisõidetaval maastikul hakkab kohati
tuulikud näha olema, samas ei ole mõju häiriv, kuna tegu pole museaalse maastikuga saja aasta
3 Siin ja edaspidi on visuaalse mõju skaala järgnev: väga suur (80-100%); suur (60-80%); mõõdukas (40-60%); vähene (20-40%) ja väheoluline (0-20%). Tugineb tööl DVC as a Supplement to ZVI: Mapping Degree of Visible Change for Wind Farms, saadaval https://www.researchgate.net/publication/362429091_DVC_as_a_Supplement_to_ZVI_Mapping_Degree_of_ Visible_Change_for_Wind_Farms
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
8 / 20 AB Artes Terræ
tagusest või varasemast ajast. Muud maastiku väärtused on kohaga seotud väärtused, mida ei
mõjuta tuulepargi kavandamine. Mõnedest vaatekohtadest hakkavad tuulikud näha olema, kuid
nende kauguse tõttu on need suhteliselt väiksed ja seetõttu vähehäirivad. Autori hinnangul ei
vähenda tuulepargi planeerimine maastiku väärtust.
Joonis 3. Väärtuslik maastik Halliste org Abja ja Karksi vahel, visuaalne mõju ja fotopunktid.
Foto 1. Elektrituulikutega fotomontaaž Pöögle piirkonnast (fotomontaaž nr 20). Elektrituulikud ei jää näha, tähistatud on tuulikute positsioonid metsamaastiku taga.
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 9 / 20
Foto 2. Elektrituulikutega fotomontaaž Põlde piirkonnast (fotomontaaž nr 18). Elektrituulikud on näha. Samas on nende kõrgus võrreldav metsa kõrgusega või lähemal asuvate hoonete kõrgusega.
2.2 Maakondliku tähtsusega I klassi väärtuslik maastik Majori talu
Joonis 4. Väljavõte maakonnaplaneeringust, Majori talu väärtuslikule maastikule on ümber tõmmatud must ring.
Majori talu asub Karksi-Nuiast ca 5-6 km edela pool, Saaretse soo lääneservas kõrgemal vallseljakul
keset metsi. Tegemist on u 20 ha suuruse taastatud põlistaluga, mida hooldatakse traditsioonilisel viisil.
Väidetavalt on siin elatud juba enne Põhjasõda. Talu põllud asuvad kahel künkal, niidud madalamal.
Talu ümbritsevad mitmekesised metsad: aru- ja soometsad, siirdesood, lodumetsad. Saaretse sood on
enne 1950. aastaid kasutatud turbavõtukohana. Sohu viiv jalgtee on tõenäoliselt väga vana:
mõnikümmend aastat tagasi leiti turbasambla alt palktee jätk, mida Liivi ja Põhjasõja ajal kasutati
vaenlase eest põgenemiseks. Siis olevat Majori talus elanud üks Karksi ordulossi ülikutest. Palkteed
kasutatud lossi ja tagasi sõitmiseks. Siit ka talu nimi – Majori.
Kõrge kultuurilis-ajalooline väärtus: hästisäilinud vanad taluhooned (osa väidetavalt üle 200 a);
omanike poolt taastatud põllud, puisniidud ja karjamaad; talumaid ja Saaretse sood läbib vana
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
10 / 20 AB Artes Terræ
palkidele ehitatud sõjatee; traditsiooniliselt hooldatud põlistaluna suur haruldus; väidetavalt seotud ka
Kitzbergi jutustustega.
Kõrge esteetiline väärtus: vahelduva reljeefiga looduskaunis kohas asuv ilus, hästihooldatud
traditsiooniline talu.
Kõrge looduslik väärtus: väga mitmekesine taimkate, sh liigirikkad rohumaakooslused haruldaste
liikidega, erinevat tüüpi metsad, 9 allikat (andmed Ülle Kukk, 1994).
Keskmine identiteediväärtus: kõrge kohalik väärtus, tuntud ka väljaspool valda.
Keskmine puhkeväärtus: olemas matkarada; võimalik välja arendada (öko-)turismitaluks või väikeseks
õppekeskuseks (traditsiooniliselt majandatud niidud ja metsad).
Kavandatava tuulepargi visuaalne mõju on vähene või väheoluline. Tänu metsa vahel olemisele ei
hakka tuulikud tõenäoliselt paistma ning koha puhkeväärtus ei vähene. Muud väärtused on kohaga
seotud väärtused, mida ei mõjuta tuulepargi kavandamine. Autori hinnangul ei vähenda tuulepargi
planeerimine maastiku väärtust.
Joonis 5. Väärtuslik maastik Majori talu (paremal) ja visuaalne mõju. Kuna mets varjab vaate ära, siis ei ole Majori talu juurest vaatepunkti.
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 11 / 20
2.2.1 Kohaliku tähtsusega II klassi väärtuslik maastik Halliste org Saapakülast Kariste
järveni
Joonis 6. Väljavõte maakonnaplaneeringust.
Ala hõlmab Halliste jõe orgu ning sellest põhja poole jäävaid põllualasid ja üksiktalusid (kasutusel ka
külanimed – Päigiste küla, Saapaküla, Vana-Kariste asula). Ala sisse jäävad ka Vana-Kariste mõisa
asukoht ja Kariste paisjärved. Põhja pool on lainja reljeefiga avara põllumajandusmaastik, lõunas
Halliste jõe org, mille luhad on siinkandis täielikult metsa kasvanud. Kariste järved on samuti enamasti
ümbritsetud metsaga.
Vana-Kariste oli kroonumõis ja sellest lähtuvalt tagasihoidliku hoonestusega, millest tänaseks on
säilinud vaid üks kõrvalhoone. Mõisa juurest avaneb vaade (üks väheseid) Vana-Kariste järvele. Vaadet
rikub nõukogude ajal rajatud kolhoosilaut Vana-Kariste nõlval, mõisa kõrval.
Uue-Kariste tee äärde jääb kunagise Liplapi kodumajanduskooli (1910-27) asukoht, mille läheduses on
säilinud pargilaadsed lehtmetsatukad.
1930. aastatel on siinseid maastikke kirjeldatud nii: “Maastikuliselt tähelepandav on kihelkonna
Halliste ürgoru ümbrus, mille tüübilisem osa Abja ja Vana-Kariste mõisa kohal. Kahel pool, põhjas ja
lõunas, tasased rohelised põllud, läbistatud kahvatukollastest teedest, tasandikult kerkinud
tumerohelised puudesalgad, millesse upuvad hallikatuselised taluhooned. Oruveerud mitmekesise,
ebatasase ilmega, künklikud, kord lagedad, kord kaetud võsastikuga, siis läbistatud tumedast puude ja
põõsastega täiskasvanud lisaorust. Kõrgel orukaldal punasekatuselised mõisaelamud, ümbritsetud
laialdasist puiestikest ja kõrvalhoonete rühmast. All tasasel orupõhjal läigib Vana-Kariste järv ja kirdes
kerkib sihvakas Halliste kiriku torn.” (“Pärnumaa” 1930).
Keskmine kultuurilis-ajalooline väärtus: põldudemuster on hästi säilinud ja põllud kasutuses; teedevõrk
hästisäilinud; asustus on paremini säilinud Päigiste poolses osas.
Keskmine esteetiline väärtus: avar maastik võimaldab vaated orule ja põldudele; endise mõisa kohalt
avaneb vaade Vana-Kariste järvele.
Madal looduslik väärtus: ala on üldiselt madala loodusliku väärtusega, olulisemad väärtused on Kariste
järved (hoiuala), Koodioru liivakivipaljandid ja Liplapi liigirikkad parkmetsatukad.
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
12 / 20 AB Artes Terræ
Keskmine identiteediväärtus: keskmise kohaliku väärtusega, paaril korral nimetatakse ka
mittemeeldivana.
Keskmine puhkeväärtus: järve põhjakülg on endise Halliste valla kõige väärtuslikum ja tuntum peo- ja
puhkepaik; järv on aga raskesti ligipääsetav soiste kallaste tõttu; kena maastik läbisõiduks.
Kavandatava tuulepargi visuaalne mõju on vähene või väheoluline. Päigiste piirkonnas, kus on ilusa
vaatega kohad, jäävad tuulikud taamal paistma (vaata eraldi fotomontaaž nr 9 ja nr 10), kuid nende
mõju ei ole domineeriv. Kavandatav tuulepark ei mõjuta väärtusi, kuna väärtused on pigem
kohapõhised ning ei ole seotud ajalooliselt säilitamist vajava panoraamvaatega.
Joonis 7. Väärtuslik maastik Halliste org Saapakülast Kariste järveni, visuaalne mõju ja fotopunktid.
Foto 3. Elektrituulikutega fotomontaaž Päigiste piirkonnast (fotomontaaž nr 9). Elektrituulikud on näha. Samas on nende kõrgus võrreldav lähemal oleva metsa kõrgusega või lähemal asuvate hoonete kõrgusega.
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 13 / 20
Foto 4. Elektrituulikutega fotomontaaž Päigiste piirkonnast (fotomontaaž nr 10). Elektrituulikud on näha. Samas on nende kõrgus võrreldav lähemal oleva metsa kõrgusega või lähemal asuvate hoonete kõrgusega.
2.3 Kangru küla
Joonis 8. Väljavõte maakonnaplaneeringust, käsitletavale maastikule ja kauni vaatega teelõigule on must ovaal ümber tõmmatud.
Kangru küla on Veelikse - Laatre - Läti piiri tee ääres olev väärtusliku maastiku reservala. Osa Veelikse
külast Laatresse ja Läti piirile viiva maantee ääres. Talud koondunud tee äärde, vaheldusrikas teeäärne
haljastus talude juures; põllumajandusmaastik üldiselt hooldatud; väike paisjärv, Laatre raudteejaama
hoone (arhitektuurimälestis). Kalmistu.
Valga - Uulu teelt Läti suunas liikudes on tegemist kauni vaatega teega. Teel kulgedes on vahelduv
maastik, on palju avatud ja pikki vaateid ning samuti on tee servas suuri/vanu üksikpuid, kasvavat
metsa ja võsa. Teele annab võlu selle looklevus ning koos kitsamapoolse olekuga tekitab igapäevaselt
siin mitte liiklejale veidi põneva ja kindlasti meeldiva aistingu. Maastikul on nii vanasid kui uuemaid
korras ja mittekorras majapidamisi, esineb ka tootmisega seonduvaid hooneid, mille seisukord on
samuti erinev. Vaate ulatuses on erinevaid elektriliine.
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
14 / 20 AB Artes Terræ
Kavandatava tuulepargi visuaalne mõju on tänu pikkadele avatud vaadetele vähene. Tuulikud on
selgelt näha ja mida edasi Läti poole liikuda, seda suuremaks need muutuvad. Samas on tuulikute
kaugus üle kolme kilomeetri ja need ei mõju domineerivalt (vaata eraldi fotomontaaž nr 13).
Kavandatav tuulepark ei mõjuta talude asustusstruktuuri ega teeäärsed haljastust – väärtusliku
maastiku reservala väärtused ei vähene, kuna väärtused on pigem kohapõhised ning ei ole seotud
ajalooliselt säilitamist vajava panoraamvaatega.
Joonis 9. Väärtuslik maastik Kangru küla, visuaalne mõju ja fotopunktid. Lääne pool ka Mõisaküla, millest avanevatel vaadetel on elektrituulikud veidi väiksemad kui alloleval fotomontaažil, kuid sarnases suurusjärgus.
Joonis 10. Elektrituulikutega fotomontaaž Veelikse küla piirkonnast (fotomontaaž nr 13). Elektrituulikud on näha ning olenevalt vaataja ja metsa asukohast on mõnel juhul elektrituuliku labade pöörlemisala kõrgem kui „allpool“ olev mets. Samas ei ole tuulikud vaates domineerivad, eespool olev elektriliini post avaldab sarnast mõju.
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 15 / 20
Joonis 11. Elektrituulikutega fotomontaaž Laatre küla piirkonnast (fotomontaaž nr 49). Elektrituulikud on näha ning olenevalt vaataja ja metsa asukohast on mõnel juhul elektrituuliku labade pöörlemisala kõrgem kui „allpool“ olev mets. Samas ei ole tuulikud vaates domineerivad.
2.4 Penuja, Abja-Paluoja - Läti piiri tee
Joonis 12. Väljavõte maakonnaplaneeringust.
Penuja on Abja-Paluoja - Läti piiri tee ääres olev väärtusliku maastiku reservala, Abja-Paluoja - Läti piiri
tee pole määratud kauni vaatega teeks, kuigi autori arvates on tegemist kauni vaatega teega. Tihedam
küla kiriku varemete ja endise koolimaja hoonetega; vaheldusrikas teeäärne haljastus talude juures;
põllumajandusmaastik kohati kasutuses, kohati võsastuv; ala piirneb Lätiga. Abja valla üldplaneeringus
(2008) on määratud osaliselt miljööväärtuslikuks hoonestusalaks.
Valga - Uulu teelt Läti suunas kulgedes on Abja-Paluoja - Läti piiri tee ääres vahelduv maastik, palju on
avatud vaateid ja samuti on tee servas kasvavat metsa ja võsa. Tee on piisavalt looklev ja
kitsamapoolne, mis tekitab igapäevaselt siin mitte liiklejale veidi põneva ja kindlasti meeldiva aistingu.
Maastikul on väga hästi korrastatud talusid (Kaidiaia, Känsi) ja lihtsalt nii vanasid kui uuemaid korras
majapidamisi, mis loovad taas meeldivustunnet ja väärtustavad maastikku. Tegemist ei ole ainult ühest
ajastust pärit hoonetega, esindatud on erinevate ajastute hooned, mida on rohkem või vähem
rekonstrueeritud ja uuendatud. Sekka on ka mõni üksik lagunev hoone – ka see on maastiku loomulik
osa. Teel liikudes näeb ühtelugu elektriliine ja vahel ka mitmekümneaastast alajaama, esineb ka väikesi
päikeseparkisid. Piirile lähenedes on tee ääres tehnoseadmetena ka valvekaamerad.
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
16 / 20 AB Artes Terræ
Tuulepark on kavandatud liikudes Läti suunas paremale poole teed, kus on rohkem metsasemat
maastikku, mis tähendab, et avatud vaated jäävad rohkem vasakut kätt. Penuja küla kandis avaneb
järjest rohkem vaateid tuulepargile.
Teel liikudes hakkab lääne suunas tuulikud näha olema. Penuja küla piirkonnas on lähimad
elektrituulikud teest 2 km kaugusel ja seetõttu on nähtav osa suhteliselt kõrge, metsast võib see olla
üle kahe korra kõrgem. Lähimate majadeni on tuulikutest 1,3 kuni poolteist kilomeetrit.
Kavandatava tuulepargi visuaalne mõju on Penuja külas ja Saate küla läänepoolsel osal tänu
väikesele vahemaale suur. Tuulepargi rajamisest tulenevalt väheneb maastiku loodusvaateline
esteetiline väärtus ja sellega kaasnevalt ka puhkemajanduslik väärtus. Eespool kirjeldatud teelõik ja
Penuja küla ei ole museaalse väärtusega, seal esineb erinevast ajastust hoonestust ning maastikul
on nähtaval ka tehnorajatised, tegu on kasutuses oleva (hästi hooldatud) maastikuga ja see on suure
potentsiaaliga. Penuja külal ei ole määratud miljööväärtuslikuks ja ka ümbritsev maastik ei ole saja
aasta tagune maastik. Sellest lähtuvalt võib autori hinnates maastikuarhitektuurset seisukohast
tuuleparki teha. Samas tuleks koostöös kohalike elanikega leida vajadusel leevendavad meetmed,
et kavandatav tuulepark ei hakkaks mõjuma elanike alalt minema peletavana.
Joonis 13. Väärtuslik maastik Penuja küla, visuaalne mõju ja fotopunktid.
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 17 / 20
Joonis 14. Elektrituulikutega fotomontaaž Penuja küla piirkonnast (fotomontaaž nr 22) Luiga teelt. Elektrituulikud on näha ning lähemal olevad tuulikud on vaates domineerivad.
Joonis 15. Elektrituulikutega fotomontaaž Penuja küla piirkonnast (fotomontaaž nr 21) Raudsepa teelt. Elektrituulikud on näha, kuid ei ole vaates domineerivad.
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
18 / 20 AB Artes Terræ
Joonis 16. Elektrituulikutega fotomontaaž Saate küla piirkonnast (fotomontaaž nr 24) Penuja-Lilli teelt. Elektrituulikud on näha, kuid ei ole vaates domineerivad.
2.5 Lilli- Ruhijärve maastik
Joonis 17. Väljavõte maakonnaplaneeringust.
2015. a inventuuri käigus kanti see II klassi maastikust reservalade nimekirja. Ala hõlmab Lilli küla, Polli-
Peraküla, Ruhijärve ja selle ümbruse üksiktalusid ning Teringi sood. Maastik on künkliku ja vahelduva
reljeefiga, seda läbib Lilli oja org. Kõrgematel künnistel domineerib põllumaa, kuid leidub ka metsa.
Madalamatel aladel, sh Ruhijärve ümber, valitseb enamasti mets. Lillit läbiv tee (Viljandi – Karksi –
Ruhja) on ilmselt väga vana, kasutatud 13. sajandil ordurüütlite poolt sõjateena ja 19. sajandil
“mulkide” poolt linade veoks Riia turule. Oli varem II kl ala, kuid väärtus on tunduvalt kahanenud (uus
Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang 24024MT3
AB Artes Terræ 19 / 20
tee külani, mis lõikab inetult reljeefi, jätkuv võsastumine, järve juurde ei pääse; ala loodusväärtused on
niigi kaitse all (Teringi MKA, Ruhijärve hoiuala, Alliku liigikaitseala).
Kavandatava tuulepargi visuaalne mõju on mõõdukas ja kohati vähene. Kavandatav tuulepark ei
mõjuta väärtusi, kuna väärtused on pigem kohapõhised ning ei ole seotud ajalooliselt säilitamist
vajava panoraamvaatega.
Joonis 18. Väärtuslik maastik Lilli-Ruhijärve (paremal), visuaalne mõju ja fotopunktid.
Joonis 19. Elektrituulikutega fotomontaaž Lilli piirkonnast (fotomontaaž nr 2). Elektrituulikud ei jää näha, tähistatud on tuulikute positsioonid metsamaastiku taga.
24024MT3 Lode piirkonna tuulepargi mõju Mulgi vallas maastikulisest küljest, eksperthinnang
20 / 20 AB Artes Terræ
3 Mõju maastikule, kokkuvõte
Ei ole õiget ega valet maastikku. On maastik ja on emotsioonid. Maastik ja selle tunnetamine on
subjektiivne, igaühel tekivad omad emotsioonid. Paljud ei ole mõtestanud maastiku olemust ning seal
toimuvaid muutusi, samas paljud on teinud elamise asukohaga seonduvaid valikuid lähtudes ka
ümbritsevast maastikust. Eestis on olulisemaid ja säilitamisväärsemaid maastikke võetud kaitse alla,
selle aluseks on olnud otseselt suur hulk maastiku väärtuseid või hindamine väärtuslike maastike
metoodika alusel.
Planeeritava tuulepargi mõjualas ei ole ühtegi maastikukaitseala, on eespool käsitletud väärtuslikud
maastikud. Ühelgi väärtuslikud maastikul pole välja toodud sellist väärtust, et sellelt maastikult
avanevasse vaatesse ei tohiks lisanduda uusi tehnilisi objekte. Kaugemal olevate maastike puhul on
vaatesse lisanduvad tuulikud väikese mõjuga. Kõige problemaatilisem on Penuja piirkond, kus
väikesest vahemaast tuleneva tõttu on elamisväärses ja hästi toimivas külas näha jäävad tuulikud
võrdlemisi suured. Nüüd on küsimus kohalikele elanikele, kuivõrd häiriv see neile on. Ja küsimus
arendaja ning elanike vahelisele koostööle, kuidas võimalikku häirivat mõju leevendada.
Inimesele, kes soovib museaalset ajaloolist maastikku, võib tehnoseade olla häiriv. Arutleda võib, et
kas saja aasta tagusel maastikul tollal uuenduslik elektriliini post oli häiriv või märk uuenduste
jõudmisest piirkonda (antud piirkonnas läks ilmselt veel mõnikümmend aastat aega elektri jõudmisega
koha piirkonda). Sama küsimus on täna elektrituulikutega. On see märk puhtast elektritootmisest või
rikub see maal ilma tehnorajatisteta looduslikku vaadet hindavate elanike koduümbruse.
Põlevkivikaevanduste üksikud aga see-eest tohutusuured aheraine- ja tuhamäed Ida-Eestis ei suurene
enam tulevikus ja suurenemise asemel hakkame aja jooksul paratamatult järjest rohkem nägema üle
Eesti erinevates kohtades tuuleparke. Harjume tuuleparkidega nagu mobiilimastide või autodega.
Planeeringutega kokku lepitud maastike väärtuste säilitamise seisukohast puuduvad piirkonnas
väärtused, mida rajatav Lode piirkonna tuulepark rikuks. Rajatav tuulepark on tulevikus näha,
lähemal rohkem ja kaugemal vähem, kuid puuduvad välistavad asjaolud selle rajamiseks. Häirib/ei
häiri teemal on elanikel, maaomanikel ja kohalikul omavalitsusel võimalus arvamust avaldada
planeerimisprotsessi käigus.
Lode wind farm
construction in the parishes of Lode and Ipiķi in Valmiera municipality
Environmental impact assessment report version for public consultation
Riga, July 2024
Estonian, Latvian & Lithuanian Environment, SIA
___________________
A. Kāla
Member of the board of directors of Estonian, Latvian & Lithuanian Environment, SIA
Riga, July 2024
Lode wind farm
construction in the parishes of Lode and Ipiķi in Valmiera municipality
Environmental impact assessment report version for public consultation
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
1
Contents
Contents ..................................................................................................................................... 1
1 INTRODUCTION .................................................................................................................. 9
2 GENERAL DESCRIPTION OF THE PROPOSED ACTIVITY SITE; SITE SELECTION SUBSTANTIATION ..................................................................................................................... 10
2.1 The proposed activity site and the surrounding area description ............................ 10
2.2 Compliance of the proposed activity with the spatial plan and property encumbrances ...................................................................................................................... 14
2.3 Description of wind conditions .................................................................................. 19
3 DESCRIPTION OF THE PROPOSED ACTIVITY ..................................................................... 22
3.1 Planned locations of wind turbines ........................................................................... 22
3.2 Description of the planned wind turbine generators ................................................ 28
3.3 Description of alternatives and justification for the choice of alternative ............... 30
3.4 Area of land required for the wind farm ................................................................... 33
3.5 Wind farm construction process ............................................................................... 36
3.5.1 Site preparation work 37
3.5.2 Construction of utilities 38
3.5.3 WTG foundation construction 39
3.5.4 Construction of access roads and areas 39
3.5.5 WTG delivery and installation 42
3.5.6 Site recultivation 44
3.6 Site containment, monitoring and control during the construction and operation . 45
3.7 Proposed activity implementation sequence and planned deadlines ...................... 45
3.8 Wind turbine related utility buffer zones .................................................................. 46
4 DESCRIPTION OF THE ENVIRONMENTAL SITUATION AND ASSESSMENT OF THE ENVIRONMENTAL IMPACT OF THE PROPOSED ACTIVITY ........................................................ 47
4.1 Noise .......................................................................................................................... 47
4.1.1 Legislative framework 47
4.1.2 Impact assessment approach 50
4.1.3 Description of the existing situation: environmental noise 52
4.1.4 Impact during construction of WTGs: environmental noise 53
4.1.5 Impact during the operation of the operation of the Lode wind farm: environmental noise 54
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
2
4.1.6 Low-frequency noise assessment 62
4.1.7 Assessment of alternatives 69
4.2 Flicker effect .............................................................................................................. 69
4.2.1 Legislative framework 70
4.2.2 Impact assessment approach 71
4.2.3 Impact during operation 72
4.2.4 Mitigation measures 79
4.2.5 Assessment of alternatives 79
4.3 Biodiversity – Plants and habitats ............................................................................. 81
4.3.1 Legislative framework 81
4.3.2 Impact assessment approach 84
4.3.3 Description of the current situation 85
4.3.4 Impact on special areas of conservation, trees, plants and habitats 100
4.3.5 Precautions to mitigate impact 101
4.3.6 Assessment of alternatives 103
4.4 Biodiversity – bats ................................................................................................... 103
4.4.1 Impact assessment approach 103
4.4.2 Description of the current situation 105
4.4.3 Impact on bat populations 110
4.4.4 Mitigation measures 111
4.4.5 Assessment of alternatives 111
4.5 Biodiversity – ornithofauna ..................................................................................... 112
4.5.1 Impact assessment approach 112
4.5.2 Description of the current situation 113
4.5.3 Impact on ornithofauna 135
4.5.4 Mitigation measures 143
4.5.5 Evaluation of alternatives 148
4.6 Landscape and visual impact ................................................................................... 149
4.6.1 Impact assessment approach 153
4.6.2 Description of the current situation 155
4.6.3 Impact on the landscape during construction of the WTGs 157
4.6.4 Impact on the landscape during operation of the WTGs 158
4.6.5 Description of the existing situation and expected impacts in Estonia 161
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
3
4.6.6 Cumulative impact on the landscape 165
4.6.7 Mitigation measures 166
4.6.8 Comparison of alternatives 167
4.7 Cultural heritage ...................................................................................................... 168
4.7.1 Regulatory framework and impact assessment approach 168
4.7.2 Description of the existing situation and assessment of impacts 168
4.7.3 Impacts on heritage assets, and mitigation measures 173
4.7.4 Evaluation of alternatives 173
4.8 Air quality ................................................................................................................. 173
4.8.1 Legislative framework 174
4.8.2 Existing air quality 174
4.8.3 Impact assessment approach 179
4.8.4 Impact on air quality during construction 180
4.8.5 Mitigation measures 182
4.8.6 Evaluation of alternatives 183
4.9 Climate ..................................................................................................................... 183
4.9.1 International, EU and national climate regulatory frameworks 183
4.9.2 Impact assessment approach 185
4.9.3 Calculation of GHG emissions and removals from the proposed activity 186
4.9.4 Measures to mitigate climate impacts 189
4.9.5 Evaluation of alternatives 189
4.10 Geology and hydrology ............................................................................................ 189
4.10.1 Impact assessment approach 189
4.10.2 Geomorphological, geological and engineering geological conditions 190
4.10.3 Mineral deposits 193
4.10.4 Characteristics and use of nearby water abstraction points and groundwater deposits 196
4.10.5 Characteristics of the surface water bodies closest to or crossing the site 197
4.10.6 Potential impacts and mitigation measures 201
4.10.7 Evaluation of alternatives 203
4.11 Waste management ................................................................................................ 203
4.11.1 Legislative framework 203
4.11.2 Potential environmental impacts during construction, operation and demolition or redevelopment and mitigation measures 203
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
4
4.11.3 Evaluation of alternatives 205
4.12 Environmental risks and emergencies..................................................................... 205
4.12.1 Legislative framework 205
4.12.2 Impact assessment approach 206
4.12.3 Description of the current situation 210
4.12.4 Results of environmental risk and emergency assessments 211
4.12.5 Mitigation measures 219
4.12.6 Evaluation of alternatives 221
4.13 Communication systems ......................................................................................... 221
4.13.1 General description of the impacts and assessment approach 221
4.13.2 Description of the existing situation, possible impacts and mitigation measures 223
4.13.3 Evaluation of Alternatives 227
4.14 Socio-economic Aspects .......................................................................................... 227
4.14.1 Assessment Approach 227
4.14.2 Socio-economic Impact of the Intended Activity on a Regional and National Scale 231
4.14.3 Socio-economic Impact of the Intended Activity on a Cross-border, Domestic and Local Scale 233
4.14.4 Impact on Socio-economic Aspects during Construction 241
4.14.5 Impact on Socio-economic Aspects during Operation 241
4.15 Other Impacts .......................................................................................................... 250
4.15.1 Vibrations 250
4.15.2 Exposure to Electromagnetic Fields 252
5 PARTICIPATION OF THE PUBLIC ..................................................................................... 257
6 LIMITING FACTORS FOR THE INTENDED ACTIVITIES AND SOLUTIONS TO MITIGATE ENVIRONMENTAL IMPACTS ................................................................................................... 258
6.1 Factors Limiting the Intended Activity .................................................................... 258
6.2 Potential Substantial Impacts and Mitigation Solutions ......................................... 259
7 COMPARISON OF ALTERNATIVES TO THE INTENDED ACTIVITY ..................................... 277
7.1 Assessment of Site Alternatives .............................................................................. 277
7.2 Assessment of Technological Alternatives .............................................................. 278
8 CONDITIONS FOR THE SUBSEQUENT MONITORING OF THE INTENDED ACTIVITY IN THE CONTEXT OF THE ENVIRONMENTAL IMPACT ........................................................................ 278
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
5
ANNEXES
1. Annex Copy of decision no. 5-02-1/21/2023 on the application of the envi-
ronmental impact assessment procedure and transboundary environ-
mental impact assessment and decision no. 5-02-1/35/2024 amend-
ing programme no. 5-03/15/2023 of 14 September 2023
2. Annex List of land units included in the Lode wind farm survey area
3. Annex Environmental noise dispersion maps
4. Annex Flicker effect calculation results
5. Annex Certified species and habitat (forests, swamps, vascular plants) expert
report (results included in the Chapter 4.3)
6. Annex Certified bat expert report (results included in the Chapter 4.4)
7. Annex Certified ornithologist report (results included in the Chapter 4.5)
8. Annex Certified landscape expert report (Latvia)
9. Annex Landscape architect report (Estonia)
10. Annex Cultural history expert report (results included in the Chapter 4.7)
11. Annex LVGMC statement on background concentrations of pollutants
12. Annex LGS letter regarding construction of wind turbine generators
13. Annex Summary of the public consultation on the report (will be added after
the public consultation on the report)
14. Annex Summary of questions and comments received during the public con- sultation on the report (will be added after the public consultation on the report)
ELECTRONIC ANNEXES
Annex E.1. Noise modelling input data
Annex E.2. Low-frequency noise assessment and low-frequency noise calculation results
Annex E.3. WindPro flicker effect calculation results
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
6
Experts involved in the preparation of the environmental impact assessment report
Name and surname Education/expert certificate No.
Anete Pošiva-Bun- kovska
Habitat and species expert, certificate no. 116
Anna Brokāne MSc in environmental planning
Baiba Ozoliņa MSc in environmental science
Evija Skrastiņa Project Manager, Master’s degree in chemistry
Inga Koļegova MSc in environmental science and management, Bachelor of Law
Jānis Prindulis Master’s degree in comprehensive quality management
Jūlija Doktorova Master’s degree in economics, MSc in environmental monitoring, modelling and management
Kristiāna Siliņa MSc in environmental planning
Pauls Tīkmanis BSc in environmental engineering
Santa Grandovska MSc in environmental science
Toms Daniels Čakars MSc in Geology, habitat expert/assistant expert, certificate no. 182
Andris Dekants Expert on bird species, certificate no. 183
Gunita Čepanone Landscape architect certificate no. 45-2011
Heiki Kalberg Landscape Architect
Maija Fonteina-Kazeka Habitat Expert, certificate no. 233
Ritvars Ritums Master’s degree in history
Viesturs Vintulis Nature expert certificate no. 070
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
7
Acronyms
RES Renewable energy sources
UN United Nations
CSB Central Statistical Bureau
NDMS Natural Data Management System
DMRB Guide- lines
Sustainability & Environment Appraisal, LA 105, Air quality
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 Fifth Generation Atmospheric Reanalysis of the Global Climate dataset
EU European Union
EUMETNET Network of European Meteorological Services
EUROCONTROL European Organisation for the Safety of Air Navigation
IAQM guidelines Guidance on the assessment of dust from demolition and construction
SPA Special protection area
SCC Species of conservation concern
SAC Special areas of conservation
ICAO International Civil Aviation Organisation
IEA Wind TCP International Energy Agency Wind Technology Collaboration Pro- gramme
IPCC Intergovernmental Panel on Climate Change
EIA Environmental impact assessment
LNVM Latvian National History Museum
LNVM AD CVVM Documents and antiquities collection of the Department of Archaeology of the Latvian National Museum of History
LVGMC Latvian Environment, Geology and Meteorology Centre
LVRTC Latvian State Radio and Television Centre
NKMP National Heritage Board
NKMP DC National Heritage Board Documentation Centre, Archaeology and His- tory Department
PSR Primary surveillance radar
GHG Greenhouse gases
SSR Secondary surveillance radar
TII Guidelines Guidelines for the treatment of air quality during the planning and con- struction of national road schemes
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
8
WTG Wind turbine generator
VOR VHF Omnidirectional Radio Range
ESB Environment State Bureau
WMO World Meteorological Organisation
ZBR North Vidzeme biosphere reserve
ZIZIMM Land use, land use change and forestry sector
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
9
1 INTRODUCTION
An environmental impact assessment has been drawn up for the proposed activity – construc- tion of a wind farm in the parishes of Lode and Ipiķi in Valmiera municipality. Construction of 19 new high capacity wind turbines (WTG) is planned for the wind farm with the total capacity of up to 136 MW. The planned activity is proposed by Utilitas Wind, SIA, registration no. 40203411869, registered office Malduguņu 2, Marupe, LV-2167.
Decision of the state bureau for the environment (VPVB) no. 5-02-1/21/2023 on application of the environmental impact assessment procedure and application of the transboundary en- vironmental impact assessment procedure to the proposed activity, i.e. the construction of Lode wind farm in the parishes of Lode and Ipiķi, in Valmiera municipality, was adopted on 18 August 2023. Environmental impact assessment programme no. 5-03/15/2023 was issued on 14 September 2023 and decision no. 5-02-1/35/2024 on amendments to programme no. 5- 03/15/2023 of 14 September 2023 for the assessment of environmental impact of the con- struction of the Lode wind farm and related infrastructure in the parishes of Lode and Ipiķi in Valmiera municipality was issued on 26 June 2024 (see Annex 1).
The construction of Lode wind farm is planned in the northeastern part of Valmiera munici- pality. By the time the application for the proposed activity was drawn up, Utilitas Wind, SIA had identified the survey area for Lode wind farm by analysing various possible locations and limiting factors. The total area of the wind farm survey area is 12.34 km2. Most of the land included in the wind farm survey area is currently used for forestry while a relatively small part of the area is agricultural land. The EIA involved an extensive analysis ans assessment of 19 WTG construction sites.
Given the rapid development of the wind industry and the lengthy period from planning to construction, the EIA process did not cover just a single specific Lode wind farm model. Several WTG models were compared by analysing their characteristics relevant in the context of the environmental impact of the proposed activity, such as sound power, rotor diameter and tur- bine height. The final decision regarding the choice of the model will be made during the de- velopment of the technical design, taking into account the operational conditions defined by the EIA process and the costs associated with the construction and operation of Lode wind farm, including the long-term electricity generation potential.
The EIA report has been drawn up by SIA Estonian, Latvian & Lithuanian Environment in ac- cordance with the programme issued by the Environment State Bureau involving experts from various fields. The report provides detailed information on the proposed activity, the wind farm planning criteria and alternative solutions as well as information on the existing environ- mental status and natural assets in and around the area of the proposed activity. In accordance with the programme issued by the state bureau of the environment, the report provides in- formation on the expected impact, including in the transboundary context, as well as pro- posals for impact mitigation or prevention, and proposals for future monitoring of Lode wind farm.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
10
2 GENERAL DESCRIPTION OF THE PROPOSED ACTIVITY SITE AND SITE SELEC- TION JUSTIFICATION
2.1 The proposed activity site and the surrounding area description
The Lode wind farm is planned in the northern part of Valmiera municipality and in Lode parish with the survey area bordering Mulgi parish in the county of Viljandi in Estonia. The populated locality (village) nearest to the proposed wind farm survey area border is Arakste, which is approximately 0.3 km away. On the Estonian side, the nearest populated localities are the vil- lages of Laatre, Saate and Penuja. A separate assessment will be carried out for the proposed construction of the cable line in Estonia in accordance with the current regulations in Estonia.
The following roads are situated in the vicinity of the proposed Lode wind farm and are planned to be used during the construction and operation of the WTGs (see also Figure 3.5.1):
- state local road V176 Sili – Estonian border;
- state local road V177 Ķoņi – Lode - Arakste;
- municipal road Arakste – Bērzi;
- VAS Latvijas Valsts Meži roads (Palejas road and Lapegļu clearance).
On the Estonian side, the nearest roads planned to be used during the construction and oper- ation of the WTGs:
- National main road 6 Valga – Uulu;
- local road 24201 Abja – Paluoja – Latvian border;
- local road 24203 Veelikse – Laatre – Latvian border
Several farmsteads are situated in the immediate vicinity of the planned Lode wind farm (see Figure 2.1.2). Although the EIA programme1 indicates that there are four buildings registered as residential buildings in the cadastre information system in the survey area, there are no residential or public buildings in the Lode wind farm survey area2. According to the statutory regulations, wind turbines must be situated at least 800 m from any residential or public build- ing.
According to the information in the register of contaminated and potentially contaminated sites maintained by the Latvian environmental, geological and meteorological centre3, the Lode wind farm survey area does not include any contaminated or potentially contaminated sites, but it is adjacent to a potentially contaminated site, i.e. a former municipal waste dump (registration number 96688/2143). There are two potentially contaminated sites situated ap- proximately 1 km from the survey area border, i.e. the former fertiliser warehouse Arakste (registration number 96688/2146) and Ezermalas (registration number 96688/2145) (see Fig- ure 2.1.2).
1 See Annex 1, paragraph 5.4 2 Kadasts.lv data (retrieved on 13 February 2024) 3 LVGMC – map of contaminated and potentially contaminated sites, retrieved on 15 February 2024.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
11
Figure 2.1.1. Location of the planned Lode wind farm.
Legend
Village in Estonian territory
National road National border
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map
JS Baltija by Jāņasēta SIA was used as a base
Parish boundary
Municipal road
Private road
Village
Survey area
High-voltage power line
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
12
Figure 2.1.2. Description of the proposed Lode wind farm surroundings in Lode parish.
Figure 2.1.3. Description of the proposed Lode wind farm related infrastructure surroundings in Lode parish.
Legend
Wind turbine generator Planned cable route Access road
Construction site
Survey area
Village in Estonian territory
Cultural monument of state significance
Potentially contaminated site
Mineral deposit
Watercourse of state signifi- cance National road Municipal road Private road North Vidzeme biosphere re- serve areas with a 30 m WTG height limit North Vidzeme biosphere re- serve areas without a WTG height limit Marshy area
Mining limit area
Residential/public building
Village
Parish border
County border
National border
The map is referenced to the Latvian coordinate system (LKS-
92) in TM projection. The digital map JS Baltija by Jāņasēta
SIA was used as a base.
Wind turbine generator Planned cable route Access road
Construction site
Substation Survey area Cultural monument of state significance
Potentially contaminated site Mineral deposit
Watercourse of state signifi- cance High-voltage power line
National road Municipal road Private road
Micro-reserve Micro-reserve protection area North Vidzeme biosphere re- serve areas with a 30 m WTG height limit North Vidzeme biosphere re- serve areas without a WTG height limit Marshy area Organic farming Residential/public building Village Parish border
County border
National border
Legend
The map is referenced to the Latvian coordinate system (LKS-
92) in TM projection. The digital map JS Baltija by Jāņasēta
SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
13
According to the information available in the LVGMC subsoil information system4, there are no subsoil resource extraction deposits or prospective subsoil resource areas in the area of the planned exploration. To the south, the wind farm survey area borders the sand and gravel deposit Arakste (deposit no. B1864), which has no valid deposit passport, allocated limits or permits for mineral extraction have been issued. To the northwest, 0.6 km from the survey area border, the sand inferred resource area Ūskalns (B17132) (see Figure 2.1.2) is situated.
The survey area of Lode wind farm is adjacent to the state-protected cultural monument no. 2458, Urgu Swedish stone with inscriptions and signs, which is a cultural archaeological mon- ument of regional significance. There are two listed cultural monuments in Arakste village, i.e. Arakstes Manor stables ( 6905) and Arakstes Manor barn (no. 6904). A cultural monument of state significance closest to the planned 330 kV cable line is Ķirbeles medieval cemetery (no. 2436), while the new substation will be 2.1 km from Veckābuļu medieval cemetery (no. 2437) (see Figure 2.1.2).
The area of the proposed activity is situated in the river Salaca drainage basin. The largest watercourses crossing the Lode wind farm construction site are the Krūmiņupīte (reclamation cadastral number 5452982:01) and Veserupīte (reclamation cadastral number 5452984:01), which are mostly regulated in the area of the proposed activity. The area of the proposed activity includes both reclaimed farmland and reclaimed forest land. The planned cable line will cross the watercourse of state significance Pestava (reclamation cadastral num- ber 54526:01).
The proposed activity site is situated in the special protection area of the North Vidzeme bio- sphere reserve5 and falls within the area where the construction of wind turbines is allowed without any height restrictions6 (see Figure 2.1.2), but there is a restriction that wind turbines should be placed in groups of not more than 20 wind turbines, minimising the distance be- tween adjacent wind turbines as much as possible.
According to the information published by the Nature Conservation Agency in the Ozols natu- ral data management system, there are no other special areas of conservation, micro-reserves or their buffer zones, or specially protected trees in the Lode wind farm survey area.
Consideration for micro-reserve no. 3099 was made in the design of the cable line within Ipiķi parish the cable along the border of the micro-reserve in its buffer zone. The special area of conservation in Latvia in the vicinity of Lode wind farm are shown on the map in Figures 2.1.2 and 2.1.3.
To ensure transmission of the electricity generated by WTGs to the grid, construction of a new substation is planned in Ipiķi parish in Valmiera municipality, on plots of land with cadastral numbers 96560030325 and 96560030141. Detailed information on the possible solutions for the transmission to the grid is provided in Chapter 3.4 of the EIA report. The details of the cable route within Ipiķi parish to connect the Lode wind farm to the substation are shown in Figures 2.1.2 to 2.1.3, and further information is provided in Chapter 3.5.2 of the EIA report.
4 https://videscentrs.lvgmc.lv/iebuvets/zemes-dzilu-informacijas-sistema 5 In accordance with the act on the Northern Vidzeme biosphere reserve (adopted on 11 December 1997, with amendments up to 6 March 2019), it has been created to promote the balanced and sustainable development of the populated localities within the biosphere reserve 6 Cabinet regulation no. 303, special rules for the protection and use of the North Vidzeme biosphere reserve
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
14
There are no sites in or near the survey area of the planned Lode wind farm that are classified as high-risk sites in accordance with cabinet regulation no. 46 of 21 January 2021, a list of high- risk sites. The nearest ones are in Valmiera about 50 km away.
According to the 2023 data on field clusters or registered farmland, there are no organic farm- ing field clusters in the survey area of the planned Lode wind farm in Lode parish (see Fig- ure 2.1.2). There are several such field clusters in Ipiķi parish, where a cable line has been planned (see Figure 2.1.3).
2.2 Compliance of the proposed activity with the spatial plan and property encumbrances
According to Valmiera municipality sustainable development strategy 7until 2038, one of the circular economy sectors in the economic specialisation of the Valmiera municipality is energy production. The strategy identifies the resources for the development of this priority sector in Valmiera municipality prioritising energy production using water, sun, wind, ground heat, waste, biomass or peat.
The Vidzeme planning region energy vision (published on 18 May 2018) set a target for reduc- ing CO2 emissions by 2050: heat and electricity production should be powered almost entirely by renewable energy sources. The Valmiera municipal sustainable energy climate action plan for 2030 stipulates that for the protection of the landscape in the municipality, solar and wind farms cannot be developed in the landscape protection areas of Valmiera municipality special area of conservation, as well as sites designated as cultural landscape areas, including in areas with scenic value of state significance. In other locations, the landscape vulnerability should be considered to minimise conflict situations that may arise from landscape deterioration in close proximity to populated localities. In conclusion, the proposed development is consistent with the objectives of the policy planning documents and the current planning conditions.
According to section 17 of the act on administrative territories and populated localities, the municipal council elected in the 2021 municipal elections will evaluate the binding regulations adopted by the former municipalities forming the municipality and adopt new municipal bind- ing regulations. The previous binding regulations of local authorities in the municipality remain in force until the effective date of the binding regulations of the municipality, but until 1 June 2022 at the latest, with the exception of the binding regulations on spatial planning, which must be drawn up by 31 December 2025. Thus, the permitted (planned) land use in the survey area of the wind farm is determined by the spatial plan of Rūjiena municipality for the 2012– 2024 period (approved by binding regulation no. 9 of the Rūjiena municipal council on 19 July 2012, on the Rūjiena municipal spatial plan for the 2012–2024 period)8.
According to the Rūjiena municipal spatial plan for the 2012–2024 period, the wind farm sur- vey area includes land units or parts thereof whose planned (permitted) use is basically de- fined as forest and agricultural (including reclaimed agricultural) land (see Figures 2.2.1 and 2.2.2). Neither agricultural, reclaimed agricultural nor forest areas are intended for the con- struction of energy production plants or facilities as their permitted use.
7 https://www.valmierasnovads.lv/content/uploads/2022/08/2red-Valm_nov_ilgtsp_att_strategija- precizets.pdf 8Spatial plan for Rūjiena municipality for the 2012–2024 period. Available at: Geolatvija.lv – Latvian Geoportal
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
15
Figure 2.2.1. Functional zoning and buffer zones of Valmiera municipality in the survey area of the planned Lode wind farm and its vicinity in Lode parish.
Figure 2.2.2. Functional zoning and buffer zones of Valmiera municipality in the infrastruc- ture area of the planned Lode wind farm and its vicinity in Ipiķi parish.
Legend
Wind turbine generator Planned cable route Survey area
Land units for development
National border
Functional zoning of Rūjiena municipality Detached housing area (DzS) Apartment block development area (DzD) Mixed development area (JA) Development area (A)
Industrial and technical development area (JRT)
Green area (DA)
Natural area (NA)
Forest area
Traffic infrastructure area Reclaimed agricultural area Agricultural area (L) Water area North Vidzeme biosphere reserve landscape protection area
Surface water body buffer zone
National local road (V)
Municipal A road
Municipal B road
Municipal C road
VAS Latvijas Valsts Meži road
National border
Land unit boundary
Archaeological monument
Architectural monument
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS
Baltija by Jāņasēta SIA was used as a base. The map was prepared using TAPIS data published by GEOLat-
vija in the spatial plan for Rūjiena municipality for the 2012–2024 period.
Legend
Planned cable route Substation
Land units for development
National border
Functional zoning of Rūjiena municipality
Detached housing area (DzS) Apartment block development area (DzD) Mixed development area (JA) Development area (A)
Industrial and technical development area (JRT)
Green area (DA)
Natural area (NA)
Forest area
Traffic infrastructure area Reclaimed agricultural area
Agricultural area (L) Water area North Vidzeme biosphere reserve landscape protection area
Surface water body buffer zone
National local road (V)
Municipal A road
Municipal B road
Municipal C road
VAS Latvijas Valsts Meži road
National border
Land unit boundary
Archaeological monument
Architectural monument
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS
Baltija by Jāņasēta SIA was used as a base. The map was prepared using TAPIS data published by GEOLat-
vija in the spatial plan for Rūjiena municipality for the 2012–2024 period.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
16
Pursuant to paragraph 25.1.3 of the use and development regulations set out in the spatial plan for Rūjiena municipality for the 2012–2024 period, free-standing installations, such as wind turbines, must be situated on a plot of land so that the distance to the plot boundary is at least the maximum height of the installation, but pursuant to paragraph 25.1.4, wind tur- bines over 20 kW may be situated in the industrial and technical development areas (R), and in agricultural areas also if local planning is created.
Regarding the distance of the VES from the boundaries of the land plots, it is concluded that it is currently in contradiction with paragraph 25.1.3 of the land use and development regula- tion, i.e, a free-standing installation, such as a wind generator, must be located on a land plot so that the distance to the boundary of the land plot is not less than the maximum height of the installation. Consequently, the construction of the planned Lode wind farm required de- velopment of a local plan and new territory use and development regulations for the local plan area, which would change the permitted land use to one that allows the construction of wind turbines, as well as cancel or change the conditions regarding the stipulated distances to the plot boundary (in compliance with cabinet regulation no. 240 of 30 April 2013, on general regulations for territory planning, use and development).
According to the above information, the construction of the planned Lode wind farm required development of a local plan and new territory use and development regulations for the local plan area, which would change the permitted land use to one that allows the construction of wind turbines, as well as cancel or change the conditions regarding the stipulated distances to the plot boundary. On 31 August 2023, Valmiera municipal council adopted decision no. 4309, on the commencement of development of the local plan for the Lode wind farm in Lode parish, Valmiera municipality, to amend the spatial plan for the 2012–2024 period for Rūjiena, which launched the development of the local plan for the Lode wind farm on 22 land plots within the municipality.
Spatial plan for Rūjiena municipality for the 2012–2024 period, Annex 5, regulations on the use and development of the land, specifies the zones where the construction of wind turbines is allowed without any height restrictions. In the rest of Rūjiena municipality, pursuant to cab- inet regulation no. 303 of 19 April 2011, on special rules for the protection and use of the north vidzeme biosphere reserve, wind turbines up to 30 m high may be built. The Lode wind farm survey area falls within the area without wind turbine height restrictions (see Fig- ure 2.1.2).
9 https://www.valmierasnovads.lv/attistiba/teritorijas-planosanas-dokumenti/lokalplanojumi/pazinojums-par- lokalplanojuma-kas-groza-rujienas-novada-teritorijas-planojumu-2012-2024-gadam-veja-parks-lode-lodes-pa- gasta-valmieras-novada-izstrades-uzsaksanu/
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
17
Figure 2.2.3. Use of territory in Valmiera municipality in the survey area of the planned Lode wind farm and its vicinity in Lode parish.
Figure 2.2.4. Land use in Valmiera municipality in the area of infrastructure related to the planned Lode wind farm and its vicinity in Ipiķi parish.
Legend
Wind turbine generator Planned cable route Survey area
Land units for development
National border
Restrictions on the use of the territory of Rūjiena municipality
Agricultural land Forest land Surface water body buffer zone
Buffer zone around a cultural monument
Road buffer zone Sewage treatment plants, their buffer zone
Reclaimed landfill site, its buffer zone
North Vidzeme biosphere reserve landscape protection area
Flooded area
National local road (V)
Municipal A road
Municipal B road
Municipal C road
VAS Latvijas Valsts Meži road
National border
Land unit border
Archaeological monument
Architectural monument
Potentially contaminated site
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS
Baltija by Jāņasēta SIA was used as a base. The map was prepared using TAPIS data published by GEOLat-
vija in the spatial plan for Rūjiena municipality for the 2012–2024 period.
Legend
Planned cable route Substation
Land units for development
National border
Restrictions on the use of the territory of Rūjiena municipality
Agricultural land Forest land Surface water body buffer zone
Buffer zone around a cultural monument
Road buffer zone Sewage treatment plants, their buffer zone
Reclaimed landfill site, its buffer zone
North Vidzeme biosphere reserve land- scape protection area
Flooded area
National local road (V)
Municipal A road
Municipal B road
Municipal C road
VAS Latvijas Valsts Meži road
National border
Land unit border
Archaeological monument
Architectural monument
Potentially contaminated site
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS
Baltija by Jāņasēta, SIA was used as a base. The map was prepared using TAPIS data published by GEOLat-
vija in the spatial plan for Rūjiena municipality for the 2012–2024 period.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
18
According to the existing spatial plan, the survey area of the planned Lode wind farm affects the buffer zones along national and local roads, cultural monuments, surface water bodies, polluted and potentially polluted sites. Information on the land use restrictions is summarised in Figures 2.2.3 and 2.2.4. Potentially, the location of the WTGs or associated infrastructure may be restricted by the buffer zone around the Urgu Swedish Stones, which is an archaeo- logical cultural monument of regional significance. However, special conditions for any con- struction and/or work in the buffer zones along roads, cemeteries, surface water bodies, rec- lamation structures or installations do not restrict the choice of location for WTG construction. Detailed information on the restrictions associated with these buffer zones is provided in Chapters 4.7 and 4.10 of the EIA report.
Pursuant to Article 13 of the act on buffer zones, in rural areas a 30 m wide buffer zone from the road axis to each side is established along national local and municipal roads. The re- strictions set out in the act on buffer zones include, inter alia, the condition that any construc- tion work, excavation or earth moving work are prohibited without the permission of the owner of the road, with the exception of the work necessary for agricultural purposes10.
Pursuant to the building regulations of the existing spatial plan and cabinet regulation no. 306 of 2 May 2012, on regulations concerning the methodology for determining the using buffer zones around reclamation structures and installations on agricultural land and forest land for watercourses (regulated sections of watercourses and specially-dug beds), as well as for hy- drotechnical structures and devices on them, the boundary of the buffer zone is determined:
- for watercourses (regulated or artificial) on agricultural land, 10 m from the water- course crest on both sides of the watercourse;
- for regulated watercourses (main canals) on forest land, 10 m from the watercourse crest on the dumping side;
- around large-diameter collectors (30 cm or more), 8 m on each side of the collector centre line.
Any construction and reconstruction of structures and utility services, and extraction of min- erals and forestation on reclaimed land, in the working buffer zones around reclamation struc- tures and installations or in places where it may affect the work of the reclamation system, require technical regulations issued by VSIA Zemkopības Ministrijas Nekustamie Īpašumi.
According to the current Valmiera municipal spatial plan, the survey area of the planned Lode wind farm is affected by the buffer zones of surface water bodies around:
- the Krūminupīte and Veserupīte rivers – 10 m wide;
- a water body or watercourse with floodland: the entire floodland area in accordance with the graphical part of the spatial plan.
The act on buffer zones, article 37, part 1, paragraph 4, subparagraph b, prohibits construction or erection of any buildings or structures, including fences, within the 10 metre zone. Pursuant to the act on buffer zones, in the buffer zone of surface water bodies, the WTG construction is
10 Act on buffer zones, article 42, part 1, paragraph 1, subparagraph c.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
19
allowed within a 10 m zone from the water body, while construction of energy transmission and distribution structures is allowed in the 10 m zone and on floodland11.
Pursuant to the spatial plan for Rūjiena municipality for the 2012–2024 period12, the minimum width of the buffer zones around swamps with an area from 10 to 100 ha is 20 m. In the survey area, these are the Lucas swamp (34 ha), the Akmeņgravas swamp (35 ha) and the Ērču swamp (38 ha). Cabinet regulation no. 93613 of 18 December 2012, on nature conservation regula- tions in forest management, stipulate that forest managers must:
- comply with restrictions on tree felling set out in the legislation on felling trees in for- ests;
- not create new reclamation ditches unless they are necessary for the management of swamps or other types of land (outside forests);
- not perform any tree felling, soil preparation or reforestation work with motorised machinery during the breeding season from 1 April to 30 June to avoid disturbance to animals.
2.3 Description of wind conditions
One of the determining factors taken into account in the selection of the suitable wind turbine generator models for the construction of the Lode wild farm is the wind conditions in the area of the proposed activity. Data from the European Centre for Medium-Range Weather Fore- casts’ (ECMWF) fifth-generation global climate weather reanalysis model dataset (ERA514) for the period from 1 January 2014 to 31 December 2023 were used to describe wind conditions in the area of the proposed activity and the assessment of wind-dependent impact.
The ERA5 model is calibrated using the real-time meteorological observation data from mete- orological network stations, including those in Latvia. ERA5 model data integration into WindPRO software developed by EMD International AS provides calibrated long-term obser- vational data on wind conditions at different altitudes over a given area. The EIA process uses data on wind conditions in the area of the proposed activity at 200 m above the ground sur- face.
According to the information on average wind speed from the ERA5 database (see Fig- ures 2.3.1-2.3.3) over the last 10 years, it has been determined that:
- the average wind speed in the area of the proposed activity is 8 m/s;
- the lowest average wind speed was recorded in 2018 at 7.6 m/s and the highest in 2020 at 8.7 m/s (see Figure 2.3.1);
- wind speed in the area of the proposed activity vary throughout the year, with the highest average wind speed occurring in the cold months of December and January and the lowest in the summer (see Figure 2.3.2);
11 Act on buffer zones, article 37, paragraph 4, subparagraph d, paragraph 5, subparagraph b 12 Spatial plan for Rūjiena municipality for the 2012–2024 period, Annex 1. Buffer zones and other restrictions in the municipality 13 https://likumi.lv/ta/id/253758-dabas-aizsardzibas-noteikumi-meza-apsaimniekos; paragraphs 3, 7 and 10 14 https://climate.copernicus.eu/climate-reanalysis
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
20
- approximately 0.2% of the total annual time in the area of the proposed operation is characterised by windless conditions with wind speed under 0.5 m/s.
The results of the wind conditions analysis indicate that the area of the proposed operation is suitable for installing WTGs that comply with the international standard IEC 61400-1 for wind turbines. Part 1: Design requirements for class III and S (designed for areas with lower wind speed). Class III and S WTGs are suitable for installation in areas where the average wind speed at mast height reaches of at least 6 m/s.
Figure 2.3.1. Annual average wind speed in the area of the proposed activity (at 200 m high)
Figure 2.3.2. Average monthly wind speed in the area of the proposed activity (at 200 m high)
Most WTGs start operating when wind speed reaches 3 m/s and are shut down when the wind speed starts to exceed 23 to 25 m/s. An assessment of the ERA5 model developed by the Eu- ropean Centre for Medium-Range Weather Forecasts determined that on an average of 8% of the time, the Lode wind farm will not generate electricity due to insufficient or excessive wind speed (assuming that the WTG is shut down at a wind speed of 25 m/s).
5,5
6
6,5
7
7,5
8
8,5
9
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
W in
d sp
ee d
m /s
5
5,5
6
6,5
7
7,5
8
8,5
9
9,5
10
10,5
I II III IV V VI VII VIII IX X XI XII
W in
d sp
ee d
m /s
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
21
Another important factor to consider when planning the construction of a WTG in a certain area and selecting a WTG model in addition to the average wind speed is the maximum wind speed, as specific WTG classes are designed to withstand certain wind force. According to the information gathered by LVGMC, the nearest national meteorological network station Rūjiena recorded wind gusts of 20–24.6 m/s in the period from the beginning of 2014 to the end of 202315. Based on the average wind speed in the area of the proposed activity, the site was found to be suitable for the installation of class III and S WTG, which are designed and manu- factured to withstand wind gusts of 52.5 m/s in accordance with the international standard IEC 61400-1.
Figure 2.3.3. The wind rose at 200 m high
15 Available at: https://videscentrs.lvgmc.lv/noverojumu-arhivs/meteo/30100/active/4218/2023-01-01/2023- 12-31
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
22
3 DESCRIPTION OF THE PROPOSED ACTIVITY
3.1 Planned locations of wind turbines
Within the scope of the proposed activity, it is planned to build the Lode wind farm in the parishes of Lode and Ipiķi, in Valmiera municipality. Wind turbines would be situated in Lode parish and connected to the electricity grid in Ipiķi parish. In total, the survey area of the pro- posed Lode wind farm includes 45 land parcels or parts of land parcels with a total area of 12.3 km2. During the environmental impact assessment, a number of potential sites for wind turbines were considered, taking into account the potential environmental and economic im- pact of construction. Based on assessments by the experts, the EIA process has identified the most suitable sites for the development.
The planned Lode wind farm could include 19 large capacity new generation wind turbines with the rated generation capacity over 6 MW per turbine. Information on the land parcels where the construction of the WTGs is planned is summarised in Table 3.1.1 and the full list of the land parcels included in the survey area is provided in Annex 2 to the report.
The site selection limitations described in Chapter 2.2 have been taken into account in deter- mining the possible turbine locations within the defined survey area.
Potential locations for the construction of the WTGs and associated infrastructure (see Fig- ures 3.1.2 and 3.1.3) are indicative based on currently available information and are subject to revisions within the borders of the property. In such event, the proponent should ensure that the changes meet the location restrictions described in Chapter 2.2, do not affect the natural assets identified in the EIA, and, where any chosen solution differs from the one as- sessed in this report, reassess the impact of the aspects that depend on the change of location, such as calculations of the flicker effect time, identification of affected development areas and creation of the turbine shutdown regimes.
Table 3.1.1. Potential WTG construction locations
WTG no. Cadastral num-
ber Cadastral designation
of the land unit Property
name Permitted use according to
the spatial plan
L_01; L_02
96680010010 96680010010 Ķeizari forest area
L_03 96680010035 96680010035 Kalnurgas forest area, agricultural area
L_04 96680010036 96680010118 Bērzi agricultural area
L_05 96680020011 96680010078 Vēveri agricultural area
L_06; L_07
96680010001 96680010001 Rapas forest area, agricultural area
L_08 96680030035 96680010041 Lucas agricultural area
L_09 96680010002 96680010043 Zīļi agricultural area
L_10 96680020077 96680010042 Pupuķi forest area, agricultural area
L_11 96680040021 96680010002 Mežāres forest area
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
23
WTG no. Cadastral num-
ber Cadastral designation
of the land unit Property
name Permitted use according to
the spatial plan
L_12 96680010085 96680010085 Dūči forest area
L_13 96680010098 96680010098 Rauķupes 2 forest area
L_14 96680010003 96680010097 Ansētas forest area, agricultural area
L_15 96680010034 96680010034 Puigas - 1 forest area
L_16 or L_16A
96680010007 96680010006 Robežnieki forest area
L_17 or L_17A
96680010004 96680010004 Mežvidi forest area
L_18 96680010071 96680010071 Lapegļu for-
est forest area
L_19 96680010075 96680010075 Akmeņgra- vas forest
forest area
According to cabinet regulation no. 240 of 30 April 2013, on general regulations on spatial planning, use and construction, the construction of wind turbines is not allowed within 800 m of any residential or public buildings. The EIA programme indicates that there are four resi- dential buildings in the survey area of the proposed Lode wind farm. The inspection was car- ried out on 13 February 2024 and it was established that according to the state cadastre infor- mation system data on the main use of the building, there are no public or residential buildings in the survey area. Figure 3.1.1 summarises information on residential and public buildings and the buffer zone around them.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
24
Figure 3.1.1. Public and residential buildings in the vicinity of the planned Lode wind farm in Lode parish.
Details of the proximity of residential properties in the vicinity of the proposed Lode wind farm to the proposed WTG sites are summarised in Table 3.1.2, and their locations are shown in Figure 3.1.1.
Legend
Wind turbine generator
Survey area
Village in Estonian territory
Residential/public building
Buffer zone around the build- ing (800 m) Land units on which construc- tion is planned
Village
National border
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS Bal-
tija by Jāņasēta SIA was used as a base. The map is based on data from the kadastrs.lv database.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
25
Table 3.2.1. Distance from the residential buildings16 in the vicinity of the planned Lode wind farm to the potential WTG construction sites
No. Cadastral designation of resi-
dential building Residential build-
ing name Nearest
WTG Distance to the nearest
WTG, m
1 96680010049001 Akmeņgravas L_19 911
2 96680010032001 Arakste L_17 1626
L_17A 1550
3 96680010066001 Arakstes Manor L_17 1662
L_17A 1660
4 96680010026001 Gaiduļi L_19 989
5 96680010022001 Grantskalni L_17 1543
L_17A 1436
6 96680010088001 Inčkalni L_16 841
7 96680010101001 Irbītes L_17 1864
L_17A 1725
8 96680010029001 Jaunotes L_15 1461
9 96680010092001 Jaunpuriņi L_19 1601
10 96680020015001 Kalnsolteri L_19 1710
11 96680010090001 Kazeri L_17 1751
L_17A 1648
12 96680010056001 Liepiņas
L_16 1400
L_16A 1300
L_17A 1160
13 96680010047001 Mālkalni L_17 1079
L_17A 833
14 96680010057001 Puigas L_15 833
15 96680010103001 Raudavas L_17 1876
L_17A 1812
16 96680010007001 Robežnieki L_15 1937
17 96680010058001 Sudmalas L_15 1157
18 96680010065001 Upeslejas L_17 1807
L_17A 1621
19 96680020047001 Vīķkalni L_19 2026
20 96680010083001 Zelmeņi L_17 1676
L_17A 1642
16 According to the data in the state cadastre information system about the main use of the building. Retrieved on 13 February 2024.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
26
The construction of Lode wind farm involves not only the construction of the WTGs, but also the development of the associated infrastructure, i.e. access roads and electricity transmission infrastructure. More information on the construction of related infrastructure is provided in Chapter 3.4 of the report.
Figure 3.1.2. WTG sites in the planned Lode wind farm in Lode parish
Legend
Wind turbine generator
Planned cable route
Road to be built
Construction site
Survey area
Land units on which con- struction is planned
National road
Municipal road
Private road
Residential/public building
Village
Parish border
National border
The map is referenced to the Latvian coordinate system (LKS- 92) in TM projection. The digital map JS Baltija by Jāņasēta SIA was used as a base. The map is based on data from the
kadastrs.lv database.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
27
Figure 3.1.3. Lode wind farm-related infrastructure construction sites in Ipiķi parish
Legend
Planned cable route
Substation
Land units on which con- struction is planned
High-voltage power line National road
Municipal road
Private road
Residential/public building
Village
Parish boundary
National border
The map is referenced to the Latvian coordinate system (LKS- 92) in TM projection. The digital map JS Baltija by Jāņasēta SIA was used as a base. The map is based on data from the kadas-
trs.lv database.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
28
3.2 Description of the planned wind turbine generators
In order to increase the amount of energy produced in the long term, plans have been made to build the next-generation high-capacity WTGs in the Lode wind farm, each with a rated generation capacity of over 6 MW. These stations are suitable for areas with lower wind speed, which complies with the international standard IEC 61400-1 on wind turbines. Part 1: Design requirements as defined for Class III and S.
Considering the rapid development of the wind industry in recent years and the lead time between the planning and the construction of the wind farm, the EIA did not focus on a spe- cific turbine model. Multiple WTG models are compared in terms of their parameters, such as plant height, rotor diameter and sound power output, which are relevant for assessing the environmental impact of the proposed activity.
It is expected that the final decision on the choice of a specific model will be taken shortly before the beginning of the technical design phase based on the operational conditions de- fined during the EIA process and the assessment of the costs associated with the construction and operation of the Lode wind farm, including the potential amount of electricity to be gen- erated over the long term.
Information on the WTG models that may be installed in the Lode wind farm is summarised in Table 3.2.1. However, the proponent does not exclude the possibility that newer-generation WTGs with equivalent or better characteristics and higher generation capacity could also be installed in the Lode wind farm.
Table 3.1.2. WTG models assessed in the EIA
Manufac- turer
Model Rated gener- ation capac-
ity (MW)
Planned mast height
(m)
Rotor di- ameter
(m)
Total WTG height
(m)
Wind speed (m/s) at which the WTG is:
started stopped
Vestas V162-
6.2 6.2 166 162 ≤ 247 3 25
Vestas V172-
7.2 7.2 166 172 ≤ 252 3 25
Nordex N163-
5.7 5.7 164 163 ≤ 246 3 26
Siemens Gamesa
SG6.6- 170
6.6 165 170 ≤ 250 3 26
All the WTG models assessed are technologically similar: the masts are assembled from steel sections; the rotors have three fibreglass composite blades with adjustable pitch angle; each nacelle incorporates a generator, transformers, brakes, power transmission equipment and devices for monitoring and controlling the operation of the WTGs. For Nordex turbines, com- bined masts can be built where the lower part of the mast is made of a monolithic concrete structure and the upper part is made of steel sections. Composite masts are usually built when the larger diameter steel mast sections cannot be delivered to a wind farm, but solutions where a large diameter section is divided into several individual segments to be assembled on site are now being increasingly used.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
29
For all the WTG models assessed as part of the EIA process, manufacturers have integrated environmental mitigation technologies. Based on the results of the assessment, specific oper- ating modes to reduce noise emissions, flicker effect and bat impact (bat mode), as well as equipment e.g. to identify and reduce the impact of icing are to be provided where necessary.
The WTG models assessed in the EIA differ in terms of their rated generation capacity. Fig- ure 3.2.1 summarises the power generation potential of each WTG model at specific wind speed while Table 3.2.2 provides information on the WTG manufacturers’ projection of the power generation potential of each turbine, taking into account information on wind condi- tions in the vicinity of the proposed operation at 200 m above the ground. According to the calculations (taking into account the average wind speed over a 10-year period), a single WTG installed in the Lode wind farm could generate up to 31.2 GWh of electricity annually. At the same time, the total energy output of 19 WTGs in the Lode wind farm could range from 375 to 594 GWh per year (not taking into account process breaks or production drops due to forced shutdowns for impact reduction).
Figure 3.2.1. Electricity generation potential (kWh) at specific wind speed
Table 3.2.2. Electricity generation potential of one WTG (GWh/year)
Parameter
Vestas
V162- 6.2
Vestas
V172- 7.2
Siemens Gamesa
SG170-6.6
Nordex
N163- 5.7
Energy generation potential calculated based on wind speed data in the area of the proposed activity
28.25
31.26 29.75 19.71
In the context of environmental impact, an important aspect is the noise level generated by the WTG, which is directly related to the wind speed, i.e. the noise level of the WTGs increases with increasing wind speed. Considering that noise pollution is one of the most important aspects analysed when assessing the impact of WTGs on public health, not only in Latvia but also in other countries, in recent years WTG manufacturers have been able to find solutions
Wind speed m/s
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
30
to avoid increase or even reduce noise emissions, while increasing the nominal generation capacity of the turbines. This is largely achieved by improving the aerodynamic performance of the WTG blades and reducing rotation speed of the rotor.
Information on the noise levels of the WTG, depending on wind speed, is provided in Chap- ter 4.1.5 of the report and summarised in Tables 4.1.4 to 4.1.6. The information in the tables was provided by the WTG manufacturers and is based on noise measurements according to the requirements of the international standard IEC 61400-11 (noise level determined at wind speed 10 m above ground) or noise level predictions based on measurements from similar turbines. As can be seen, the noise emissions of all WTGs increase as wind speed increases, but do not increase any further once the rotor reaches its rated speed.
3.3 Description of alternatives and justification for the choice of alternative
The EIA process assessed both the location of the proposed activity, i.e. WTG installation site, and the technical alternatives, i.e. WTG models. The alternatives for the location of the WTGs include different options for the turbine locations, which have been assessed in the EIA to arrive at the most optimal solution to balance different nature and environmental interests. The alternatives for the WTG locations assessed during the EIA process are shown in Fig- ure 3.1. In the assessment of location alternatives, the report retains 2 alternative sites for turbines L_16 and L_16A, L_17 and L_17A, as alternatives L_16A and L_17A are only feasible if an agreement to demolish the Inčukalni residential property is reached.
The technical alternatives assessed in this report are described in Chapter 3.2.
For each aspect of the impact, the location and/or technical alternative is assessed with the relevant information, assessment and conclusions presented in a specific chapter of the EIA report (summarised in Table 3.1).
Potential locations for the construction of WTGs are indicative based on currently available information and are subject to revisions within the borders of the property. In such an event, at the technical design phase is should be ensured that the changes do not affect the natural assets, and, where any chosen solution differs from the one assessed in this report, reassess the impact of the aspects that depend on the change of location, such as calculations of the flicker effect time, identification of affected development areas and creation of the turbine shutdown regimes.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
31
Figure 3.1. Alternatives locations for the proposed activity assessed during the EIA process
Table 3.3.1 summarises the aspects assessed in the EIA report, which have been assessed in the context of both main WTG alternative locations and other WTG alternative locations and in the context of technological alternatives.
Table 3.1.3. Alternatives assessed in the EIA report
Aspect EIA report
section WTG location al-
ternatives Technological al-
ternatives Environmental noise 4.1. - x
Low-frequency noise 4.1. - x
Flicker 4.2. - x
Biodiversity – plants and habitats 4.3. x -
Biodiversity – bats 4.4. x x
Biodiversity – ornithofauna 4.5. x x
Landscape and visual impact 4.6. x x
Cultural heritage 4.7. x -
Air quality 4.8. x -
Climate 4.9. x x
Geology 4.10. x -
Hydrology 4.10. x -
Waste management 4.11. - -
Environmental risks and emer- gency situations
4.12. x x
Communication systems 4.13. x -
Vibrations 4.15.1 - -
Legend Wind turbine location
Initial wind turbine location Planned cable route
Substation
Survey area
City
Village
Parish boundary
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
32
Exposure to electromagnetic fields
4.15.2 - x
As mentioned above, the WTG locations are based on the assessment of the impact of the WTGs during the construction and operation done by a habitat expert, an ornithologist and a bat expert. The following is a justification of the assessment of the alternatives in the context of each of the aspects assessed in the EIA:
▪ Ambient and low-frequency noise: - The noise levels from WTGs are different for different WTG models and the EIA
assesses the main WTG location alternatives and technological alternatives; ▪ Flicker:
- The WTG flicker effect is different for different WTG models and the EIA as- sesses the main WTG location alternatives and technological alternatives;
▪ Biodiversity – plants and habitats: - Construction of WTGs and associated infrastructure may affect special pro-
tected species or habitats, and the EIA assesses a number of WTG location al- ternatives;
▪ Biodiversity – bats: - WTG operation can potentially affect bat populations, and the EIA assesses the
initial and main WTG location alternatives taking into account the expert opin- ion on the areas where the WTG construction is not desirable during the sur- vey;
▪ Biodiversity – ornithofauna: - WTG operation can potentially affect bird populations, but the magnitude of
the impact is largely not dependent on the WTG locations, but on the overall suitability of the site for certain bird species. The EIA assesses the initial and main WTG location alternatives taking into account the opinions of experts on the areas where the WTG construction is not desirable during the survey;
▪ Landscape and visual impact: - WTG operation will lead to changes in the landscape and the EIA assesses the
main WTG location alternative and technological alternatives (worst-case sce- nario);
▪ Cultural heritage: - The WTG construction and operation can potentially affect various heritage as-
sets and the EIA assesses the main WTG alternative; ▪ Air quality:
- Significant emissions of air pollutants are attributable to the processes planned for the construction phase of the farm, but no significant emission sources are identifiable during the period of operation; the main WTG alternative has been assessed in the EIA;
▪ Climate: - The potential GHG emission reductions are linked to the area of land to be
transformed and the potential for electricity generation, and the EIA assesses the main WTG location alternative and technological alternatives;
▪ Geology and hydrology:
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
33
- The WTG construction locations affect geological, engineering geological and hydrological conditions of the site and the buffer zones around surface water bodies, and the EIA assesses the main WTG alternative;
▪ Waste management: - The WTG models for waste management are described as equivalent, the EIA
assesses the overall conditions for waste management regardless of the tech- nological or location option chosen.
▪ Environmental risks and emergency situations: - The risks associated with the operation of WTG are influenced by the technical
characteristics of the WTG models, the EIA assesses the main WTG location al- ternative and the technological alternatives;
▪ Communication systems: - The operation of the WTG can potentially affect the operation of communica-
tion systems, the EIA assesses the main alternative and technological alterna- tives (consultations with AS Latvijas Gaisa Satiksme);
▪ Socioeconomic aspects: - The construction and operation of WTGs can potentially affect various socio-
economic aspects (e.g. tourism, property value, etc.), the EIA analyses various studies;
▪ Vibrations: - WTG operation generates vibrations. The EIA assesses whether provisions are
needed to mitigate vibration, regardless of the technological or location solu- tion chosen.
▪ Exposure to electromagnetic fields: - WTG operation and cable routes generate electromagnetic fields, and the EIA
assesses technological and cable route alternatives.
3.4 Area of land required for the wind farm
The total area of the Lode wind farm survey area identified by the planning process is 12.34 km². However, only a fraction of this area will be needed for the construction of WTGs and related infrastructure. Some of these areas will be used during both the construction and operation of the farm, and some only during the construction phase.
The land required for the farm can be divided into three groups as shown in Table 3.4.1:
- long-term built-up areas;
- areas occupied only during the construction process;
- areas where overgrowth height restrictions must be put in place for the transportation of equipment.
Certain areas are also required for the construction of electricity transmission infrastructure. Considering that the proposed activity is to construct electricity transmission cable lines, which will allow the area above the routes to be used for its existing purposes after the cables are laid, the area required for the electricity transmission infrastructure has not been analysed in detail.
During the construction, areas adjacent to the aforementioned structure construction loca- tions may be temporarily disturbed by the placement of materials, such as topsoil and soil,
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
34
removed from the area intended for the construction of the road or platforms. The area of potentially temporarily constrained sites cannot be determined at this stage, as it is directly dependent on the solutions and construction technology used during the construction.
Based on the technical specifications of the WTG manufacturers, Table 3.4.1 summarises the information on the area of land required for the construction of the planned wind farm17. Ac- cording to the calculations, the construction of 19 WTGs will require about 63 ha, of which 17 ha are for long-term development. Of this area, about one third will be used to operate the WTGs after the construction process is completed. It is expected that no restrictions on eco- nomic activities will be imposed in the remaining area.
Table 3.1.4. Land required for the wind farm construction
Site
Area required (ha)
Main alterna- tive
With WTGs L_16A and L-
17A
Long-term built-up areas
Construction of new access roads 11.44 0.81
WTG foundation area 1.9 0.2
Main crane working platform 1.9 0.2
Substation area 1.76
Areas occupied by structures only during the construction
Temporarily used parts of the construction site 45.32 2.82
Deforestation areas
Installation sites 15.05 2.88
For the construction of new access roads and the improvement of municipal roads
2.25 0.08
WTG construction
According to the Nordex N163 technical specifications, the construction of one assembly site requires an area of approximately 1 ha. Overgrowth clearing and ground surface levelling will be required in the area. Once the construction of a WTG is completed, about 0.6 ha of the assembly site will be available for further business activities. The assembly site layout ele- ments which were taken into account for the further detailing and environmental impact as- sessment are provided in Figure 3.5.2 of the report. It should be noted, however, that the configuration of the assembly site may change based on the WTG installation site conditions and technical specifications of the different manufacturers.
The information on the area required for the construction of the assembly site for one WTG (unit area) and 19 stations (total area) based on the Nordex N163 model construction specifi- cation is summarised in Table 3.4.2.
17 Nordex N163 model construction specification, in which the manufacturer has laid down conditions for the construction of access roads and assembly sites, was used as a basis.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
35
Table 3.4.2. Approximate land area required for the wind farm construction
Table 3.4.3 summarises the area requiring transformation during the installation of each tur- bine.
WTG no.
Land use on the assembly site where transformation would be required (incl. assembly site access road), ha
Defor- estation area, ha
Agricultural land and other vegetated sur- faces
Forest, by forest type
Dry mineral soils
Wet mineral soils
Wet or- ganic soils
Drained mineral soils
Drained or- ganic soils
L_01 0.01 0.27 0.14 - - 1.09 1.51
L_02 0.11 0.80 - - - 0.60 1.40
L_03 - 0.01 0.05 1.15 0.31 - 1.51
L_04 1.51 - - - - - -
L_05 1.51 - - - - - -
L_06 - 0.87 - 0.64 - - 1.51
L_07 1.51 - - - - - -
L_08 1.51 - - - - - -
L_09 1.51 - - - - - -
L_10 1.25 - - - 0.26 - 0.26
L_11 - 0.89 0.62 - - - 1.51
L_12 1.51 - - - - - -
L_13 1.47 0.05 - - - - 0.05
L_14 1.51 - - - - - -
L_15 - 0.44 - 0.65 0.38 0.04 1.51
L_16 - 1.51 - - - - 1.51
L_16A 0.14 1.17 0.19
L_17 0.25 1.21 0.02 - 0.03 - 1.26
L_17A 1.51
L_18 - 1.51 - - - - 1.51
L_19 - 1.06 - - - 0.46 1.51
Total 13.82 11.31 1.02 2.43 0.97 2.19 15.05
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
36
Table 3.4.3. Areas of land to be transformed for assembly sites
Purpose of the site WTG unit con-
struction area, ha
Total area required for construction, ha
Main alternative With WTG L_16A and
L_17A
WTG foundation area 0.1 1.9 0.2
Part of the WTG assembly site for main crane operation
0.1 1.9 0.2
Only assembly site elements necessary for the construction process
0.6 11.4 1.2
Access road to the installation site ~0,2 3.8 0.4
Table 3.4.4. Approximate area of land to be transformed for new access roads
Agricultural land and other vege-
tated surface area, ha
Forest, by forest type, ha Deforesta- tion area, ha
Dry mineral soils
Wet mineral soils
Drained mineral
soils
Drained or- ganic soils
16.17 1.35 0.39 0.28 0.32 2.25
3.5 Wind farm construction process
While the most significant environmental impact in the context of wind farms are related to their period of operation, the construction of a wind farm itself can cause irreversible and significant changes to the environment if the factors and actions affecting the environment are not timely identified and appropriately managed. A detailed plan for the construction pro- cess of the proposed wind farm will be developed after the of the EIA process. However, in preparation of this report, the most significant factors and actions associated with the con- struction of the wind farm that may have a negative impact on the environment have been identified.
The information on the construction process of the Lode wind farm in the EIA report is based on the information provided by the proponent and in the WTG manufacturers’ construction specifications. The main stages of the construction process:
1. Document preparation and approval: This stage involves drawing up the documentation, which includes technical designs, obtaining permits and the necessary regulatory approv- als.
2. Construction work: - Site preparation: Topsoil removal and levelling to prepare the construction site. - Construction of access roads and areas: Construction of roads and areas both for the
delivery and installation of the turbines and for the access infrastructure. - Rearrangement of reclamation systems: Where necessary, improvement of water
drainage systems and ensuring better site drainage. - Construction of utilities: Construction of power supply and communication systems
necessary to run the turbines.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
37
- WTG foundation construction: Construction of sturdy foundations to support the wind turbines.
- WTG delivery and installation: Installation of wind turbines and connection to the grid.
- Site recultivation: After construction is completed, restoration of the natural environ- ment and appearance of the site.
3. Wind farm commissioning.
The exact construction plan for the Lode wind farm will be developed as a part of the con- struction design, once the specific WTG model selected for construction is known and the lo- gistics matters for the delivery the materials, equipment and machinery needed for construc- tion are arranged. The construction of Lode wind farm and related infrastructure may begin in 2025, and is scheduled for completion in 2027. The wind farm is expected to be built in one phase within about two years.
The wind farm construction also involves transporting significant amounts of materials and equipment. According to the specifications provided by the WTG manufacturers:
- construction of new access roads – up to 30 lorries per 100 m of new road;
- construction of installation sites – up to 140 lorries per site;
- WTG construction – up to 280 lorries per WTG;
- main crane assembly – up to 55 lorries per WTG.
Consequently, the average number of lorry trips over the 2-year period of the construction of 19 WTGs could be around 34 lorries per day (round trip) or 3 lorries per hour (during the day). Further details on the expected noise increase in the vicinity of the roads are provided in Chap- ter 4.1.4.
3.5.1 Site preparation work
The wind farm construction will begin with site preparation work, which will include the re- moval of topsoil and subsoil in the areas where new roads and WTGs will be built, the con- struction of assembly sites and excavation of construction pits for the WTG foundations.
It is expected that a dedicated area will be created to store the necessary construction mate- rials, except the WTG components and the large machinery which will be assembled at each WTG construction site. The area of one assembly site could be around 1 ha. The base will be made of gravel and crushed stone ensuring load-bearing capacity of at least 200 kN/m2. The exact site locations and area will be determined during the design phase. It will be planned outside special protected habitats and protected species sites.
In areas where new roads and assembly sites are planned, as well as in areas where WTG foundations are to be built, topsoil will be removed before beginning the construction work. The removed topsoil will be temporarily placed along the construction site border. Detailed engineering geological survey at the WTG construction sites will be initiated after the EIA pro- cess is completed. During this survey, the bearing capacity of the soil will be assessed for each WTG site. It is expected that the topsoil removed will be used for site recultivation during the final phase of the construction process.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
38
3.5.2 Construction of utilities
Lode wind farm will have cable connection to a substation planned west of Ipiķi providing a link to the third Estonian-Latvian 330 kV interconnector. The new cable line to connect the wind farm to the substation will start at the WTG L_06, cross the Latvian-Estonian border in about 250 m and continue along the Estonian territory for about 3 km. The cable line contin- ues along the Latvian border to the narrow-gauge railway Rūjiena-Ipiķi-Pärnu embankment. This section is approximately 1.3 km long. The cable line is planned to run for ~3.5 km along the narrow-gauge railway Rūjiena-Ipiķi-Pärnu embankment to the micro-reserve ML 3099, then turning west, crossing the micro-reserve buffer zone and continuing through the forest and farmland to the substation for approximately 5.2 km. The layout of the cable route is shown in Figure 3.1. In Lode parish, the cable route will cross land units with the following cadastral designations: 96680010001 and 96680010072, in Ipiķi parish – 96560020002, 96560020054, 96560020060, 96560040036, 96560040040, 96560040057, 96560040008, 96560040027001, 96560040024, 96560040029, 96560040034, 96560030122, 96560030319, 96560030011, 96560030054, 96560030300, 96560030094, 96560030129, 96560030067, 96560030158 and 96560030141. The substation is planned on land parcels with the cadastral designations 96560030141 and 96560030325.
According to the territorial use and building regulations of the spatial plan of Rūjiena munici- pality for the 2012–2024 period, construction of engineering communications and engineer- ing networks is allowed in all territories, in accordance with the statutory regulations.
A separate assessment will be carried out for the cable route in Estonia in line with the appli- cable the statutory regulations.
Although the construction of overhead lines is a cheaper option, the proponent of the pro- posed activity intends to install underground cable lines for the transmission of electricity to the substation, thus reducing both the environmental impact of the proposed activity and the land use potential of the transmission line routes.
Cable lines will be installed in the road right-of-way whenever possible. The expected area required for the substation is up to 1 ha. It should be noted that during the construction, the communication networks necessary for the control and monitoring of the WTGs will also be built. It is expected that the networks to be constructed (fibre optic and low-current cable lines) will be installed next to the electricity transmission networks and that the utilities will be installed together with the construction of the access roads.
Information on potential locations for the construction of electricity transmission infrastruc- ture, as well as planned locations for the construction of cable lines, is provided in Figure 3.5.1.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
39
Figure 3.5.1. Planned power supply infrastructure
3.5.3 WTG foundation construction
It is expected that the WTGs in the planned wind farm will be installed on a monolithic rein- forced concrete foundation in accordance with the technical specifications of the manufactur- ers and taking into account the bearing capacity of the soil on the proposed activity site. The size of the WTG foundation structure depends on the WTG model to be installed, the height of the mast, the bearing capacity of the soil and other factors.
Detailed engineering geological survey of all WTG sites will be performed by the proponent after the completion of the EIA process. The engineering geological survey will assess the bear- ing capacity of the soil on each WTG site. If the engineering geological survey identifies areas where the soil bearing capacity is insufficient for the construction of the selected WTG, the foundation structure will be built on piles in those locations. Whether the piles will be required and the technological solution for the construction thereof will be determined during the con- struction design phase.
3.5.4 Construction of access roads and areas
To ensure access to the WTG construction sites during the construction and operation of the wind farm, access roads and assembly sites should to be constructed and, where necessary, existing roads need to be adapted.
Access to the planned Lode wind farm during the construction and operation is planned via the national local roads V176 Sīļi-Estonian border and V177 Ķoņi-Lode-Arakste, as well as the municipal road Arakste-Bērzi and the roads of VAS Latvijas Valsts Meži roads (Palejas road and Lapegļu clearance) (see Figure 3.5.2). It is expected that access could also be provided via
Wind turbine generator
Planned cable route
Access road
Construction site
Substation
Survey area
High-voltage power line
National road
Municipal road
Private road
Village
Parish boundary
National border
Legend
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
40
Estonian roads and roads owned by others, which are currently used for access to farmland clusters and forest areas.
During the development of the construction project for the planned wind farm, the suitability of national and local roads for transporting construction materials and components of the WTGs will be assessed, including, if necessary, adapting all or part of the necessary road sec- tion to improve load-bearing conditions. The need for and the way of adaptation of any mu- nicipal or national roads will be arranged with the owner of the road concerned. The total length of potential municipal roads under access roads is 8.11 km.
As mentioned above, the existing access road network is not sufficient for the construction of the proposed wind farm, and the new access roads are planned as part of the implementation of the proposed activity. New roads are planned close to the boundaries of field clusters or parcels, where possible, thus reducing farmland fragmentation. The location of access roads will be agreed with the property owners and their comments will be taken into account with roads being situated to minimise their impact on the use of agricultural and forest land. The total length of prospective roads is about 11.66 km. The locations of the access roads to the proposed Lode wind farm are shown in Figure 3.5.2.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
41
Figure 3.5.2. Road network used for the construction of the Lode wind farm
Pursuant to requirements of the WTG manufacturers, all access roads must be at least 6 m wide (at least 4.5 m over straight, flat sections) and have load capacity over 250 kN/m2. Exist- ing roads less than 6 metres wide would be widened. New roads will be gravel and crushed
The map is referenced to the Latvian coordinate system (LKS- 92) in TM projection. The digital map JS Baltija by Jāņasēta SIA
was used as a base.
Legend
Wind turbine generator
Road to be built
Construction site
Substation
Survey area
National road
Municipal road
Private road
Village
Parish boundary
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
42
stone with adequate bearing capacity. The specific technical solutions and scope of work will be determined by assessing the technical condition and load-bearing capacity of each road section during the construction design phase.
New roads to be built are planned in the vicinity of the existing reclamation ditches whenever possible, thus reducing the need for new drainage infrastructure. It is expected that sections of existing roads that currently have roadside ditches to direct rainwater away from the road will be maintained, with cleaning and profiling where necessary. For the adaptation of existing roads that do not currently have roadside ditches for storm water drainage, as well as for the construction of new roads, the need for ditches will be assessed and they will only be installed if natural drainage conditions are insufficient to drain storm water from the road. As part of the construction project for the planned wind farm, solutions will be developed and imple- mented during the construction to ensure that the existing reclamation and drainage system will continue to function after the planned wind farm is built.
An assembly site is planned by each WTG to be built. The size and configuration of the assem- bly site depends on the model of the WTG, machinery used for the assembly, location of the site, changes in ground surface elevation, logistics solutions, rotor assembly solutions and other process limiting elements such as the location of stand-alone trees to be preserved, etc. The configuration of each assembly site will be designed in cooperation with the selected WTG manufacturer or its authorised construction company.
A illustrative example of an assembly site is shown in Figure 3.5.3. The elements of the assem- bly site, such as access roads, main crane working area and the hard surfaced areas (hard surfacing: compacted gravel material providing the specified load bearing capacity) and the WTG foundation area, will be created during the construction process and maintained during the lifetime of the wind farm. The elements of the assembly site for the blade and mast ele- ments will be created during the construction and dismantled after the construction of the WTG. The elements of the assembly site, such as access roads and the main crane working area, will be made of gravel and crushed stone material and must have load-bearing capacity over 250 kN/m2.
Figure 3.5.3. Example of an assembly site.
3.5.5 WTG delivery and installation
During the development of the construction design, the transport routes will be assessed in detail and a transport plan for the WTGs will be developed in cooperation with the performer of the proposed activity and the manufacturer of the selected WTG model. The WTG compo- nent size and weight, road capacity and other restricting factors, such as location of bridges, viaducts and other facilities along the transport route or close to roads will be taken into
Direction of travel >>
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
43
account when developing the delivery plan. Where necessary, the road will be adapted, car- rying capacity improved or the road configuration modified to ensure that the constructed road surface is suitable for the manoeuvring of oversized cargo vehicles.
It is expected that the WTGs could be delivered from their place of manufacture to the port of Paldiski, from where they could be transported by road along the E67 or E263 to Valga-Uulu and then to the planned wind farm site.
The planned Lode wind farm will have a direct impact on the landscape during its construction.
Given the overall dimensions of the wind turbines and the experience of other countries in transporting turbines to their installation site, it is known that the turbines will be transported in parts as oversize cargo. This requires a thorough preliminary survey to determine the best transport corridors, identify conflict points and define the necessary measures to clear the route. According to the EIA developer, three routes are being studied. All routes start from the Valga-Uulu (Estonian territory) motorway 6 and go from Arakste to the proposed activity site with only the middle portion of the route changing (see Figure 3.5.4).
When assessing the work required to clear transport routes for the transport of turbine parts, it was established that in Estonia the work mainly involves relocation or temporary dismantling of overhead power lines below and the temporary dismantling of existing road infrastructure such as lanterns or road signs. In Latvia, however, most of the work involves cutting or trim- ming roadside vegetation, i.e. trees, shrubs, bushes, etc., to provide wide enough corridors or adequate radii on bends and curves.
The WTG component delivery to the proposed activity site will be done by the manufacturer of the WTG or its authorised carrier using specially designed and equipped vehicles. Consid- ering that transportation of WTG components may interfere with movement of other vehicles along the transport route, it is expected that the deliveries of WTG components could also take place at night when traffic is lower. Oversize cargo delivery routes will be coordinated in accordance with the statutory regulations governing the carriage of oversized and heavy goods.
The delivered WTG components will be stored either at the WTG assembly site or in dedicated areas for temporary storage of machinery, equipment and materials. The WTG installation in the Lode wind farm will be carried out by the manufacturer of the selected WTG model or its authorised construction company. During the construction design phase, a detailed plan for the WTG installation will be drawn up in cooperation between the proponent of the proposed activity and the WTG manufacturer and/or a contractor authorised by the manufacturer. In- stallation of a single WTG typically requires 5 to 7 days, but in the event of high very strong wind which make safe WTG installation impossible, the estimated installation time may be longer. Assembly takes place at wind speed of up to 10 m/s.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
44
Figure 3.5.4. Possible WTG delivery routes
3.5.6 Site recultivation
After the construction is completed, the areas built for the temporary storage of machinery, equipment and materials, and the WTG assembly site elements for placing the blades and mast sections, will be dismantled. Considering that all areas will be used for parking and op- eration of machinery during the construction, if any contamination is visually established, soil contamination tests will be done to assess the removed soil use options before further any
Legend
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base.
Route no. 1
Route no. 2
Route no. 3
National road
Municipal road
City
Municipality border
National border
Survey area
Possible WTG delivery routes
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
45
use of the soil removed from the areas being dismantled. Considering that all sites will be made of gravel and crushed stone, it is expected that the soil from the reclamation will be used to repair the access roads.
Topsoil will be restored in the recultivated areas using soil removed from the construction sites during site preparation. It is expected that once the recultivation work is completed, the areas used during the construction process that are no longer necessary for the WTG operation can be used for future agricultural or forestry activities.
3.6 Site containment, monitoring and control during the construction and operation
No access restrictions to Lode wind farm sites are planned during the construction or opera- tion, except specific parts of the site during construction.
Construction companies with relevant experience will be contracted for site preparation, con- struction of access roads and areas, rearrangement of reclamation systems, construction of utilities, construction of the WTG foundations, WTG delivery and installation and recultivation of the construction site. They will ensure the containment, monitoring and control of the site, taking into account the requirements of Latvian legislation, such as cabinet regulation no. 500, on general construction regulations. Permanent physical security will be provided at construc- tion sites where construction materials and equipment are stored.
Detailed information on the organisation of the construction work and restrictions during the construction will be included in the construction organisation plan, which is an integral part of the technical design and binding on the contractors.
When the wind farm is put into operation, information signs will be installed on the roads crossing the wind farm site to inform about the recommended safety precautions and emer- gency response. During the operation of the wind farm, the WTG will be monitored and con- trolled remotely 24 hours a day, every day. During maintenance or in emergency situations, the WTG will be monitored and controlled and, if necessary, access will be restricted by trained personnel on site. During the operation of the wind farm, economic activities outside the WTG sites will not be restricted, so it is expected that property managers will be able to use the adjacent areas for agriculture or forestry even after the WTGs are built. If necessary, the per- former of the proposed activity will inform the agricultural or forestry operators of safety measures and emergency actions.
3.7 Proposed activity implementation sequence and planned deadlines
The EIA process for the planned Lode wind farm is currently underway. The EIA process is expected to be completed in 2024. Once the EIA process is completed and the approval is received, the construction design phase of the wind farm will begin, including the final selec- tion of a specific WTG model. Once the design has been drawn up and approved, construction work will begin and is expected to be completed within about two years from the start of the construction.
The expected WTG lifetime is 25 to 30 years. If the benefits of selling the energy generated by the plant outweigh the costs of maintenance and upgrading, well-maintained WTGs can have longer lifetime. Experience from other countries shows that the actual lifetime of a wind farm can also be affected by technological developments and industry policy. At the end of their lifetime, wind farms are dismantled or repowered. Currently, it is not possible to predict which
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
46
of these options will be used at the end of lifetime of the planned wind farm. During the dis- mantling, WTGs and their foundations are completely disassembled, while repowering means that old turbines are mostly replaced by new ones.
According to information provided by the WTG manufacturers, 85–95% of the materials used to build the plants are reusable and only a small portion of the materials are currently not recycled and are incinerated in special plants. Currently it is difficult to predict what share of the materials used to build the turbines will be suitable for recycling. It is likely that the share of recyclable materials will increase as turbines reach the end of their lifetime, as the number of material types suitable for recycling increases and technological solutions for recycling im- prove.
3.8 Wind turbine related utility buffer zones
Pursuant to the amendments to the act on buffer zones adopted on 6 October 2022, there are no safety buffer zones around wind turbines. During the construction of the planned wind farm, buffer zones will be established around the constructed infrastructure of the power transmission systems, i.e. transformer substations, electrical and electronic communications networks.
According to the act on buffer zones, the following buffer zones should be established around the aforementioned infrastructure objects:
- 1 m wide buffer zone around transformer substations;
- 1 m wide buffer zone along electricity cable lines:
• 1.5 m wide buffer zone if the cable crosses a forest area;
• if a cable is closer than 1 m to a building or structure, the buffer zone on that side of the cable is limited to the foundations of the building or structure;
• a 1 m wide buffer zone along the underground lines of electronic communications networks:
▪ if the line is within the road right-of-way and closer than 1 m from the edge of the road right-of-way, the buffer zone on that side of the electronic com- munications network line is up to the border of the road right-of-way;
▪ if the line is closer than 1 m to a building or structure, the buffer zone on that side of the electronic communications network line is up to the foun- dation of the building or structure;
▪ if the line is within the red line of a road, street or access road (including utility corridors) and closer than 1 metre both from the building line and the foundation of a building or structure, the buffer zone on that side of the electronic communications network line is up to the building line or the foundation of the building or structure (whichever is the closest).
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
47
4 DESCRIPTION OF THE ENVIRONMENTAL SITUATION AND ASSESSMENT OF THE ENVIRONMENTAL IMPACT OF THE PROPOSED ACTIVITY
4.1 Noise
This chapter of the EIA report assesses the potential impact of the proposed Lode wind farm on noise levels in the vicinity of the proposed activity. The assessment covers the ambient noise from the operation of the WTGs. The chapter is supplemented by input data for the environmental noise calculation model generated by the noise software attached in Annex E.1.
WTGs generate noise not only in the range of frequencies audible to humans, but also very low-frequency sound, infrasound, and high-frequency sound or ultrasound. Infrasound is sound below 20 Hz beyond the human hearing range, low-frequency sound is sound between 10 and 160 Hz and ultrasound is sound above 20 kHz beyond the human hearing range. Infor- mation in various publications and websites related to potential negative impact of WTGs on society, relatively frequently mention the low-frequency sounds produced by WTGs, their prevalence and negative impact. An assessment of low-frequency noise from the proposed wind farm and the results of the low-frequency noise calculation attached in Annex E.2 are added to the chapter on noise impact.
4.1.1 Legislative framework
Environmental noise – Latvia
Environmental noise indicators, their application and assessment methods are determined by cabinet regulation no. 16 of 7 January 2014, on noise assessment and management. In accord- ance with Annex 1 to the regulations, the calculation methods set out in Annex 5, section 2.1 (general – traffic, railway track and industrial noise) and section 2.4 industrial noise, sec- tion 2.5 (calculation: noise propagation from traffic, railway tracks and industrial sources) should be used for forecasting environmental noise generated by the planned sites. Annex 2 to the aforementioned cabinet regulation sets out the environmental noise limit values appli- cable depending on the main types of land use established in the municipality’s spatial plan and taking into account areas which include residential buildings registered in the state cadas- tre information system as development land or land under residential courtyards. Under the regulations, the ambient noise limit values are set for annual average noise levels during the day, evening and night.
The environmental noise limit values applicable to the construction areas in the vicinity of the planned wind farm have been determined on the basis of the existing Rūjiena municipal spatial plan for the 2012–202418 period, and taking into account the information on the location of residential buildings and the main use of the buildings included in the state cadastre infor- mation system. According to the existing spatial plan, the proposed activity site and its sur- roundings include farmsteads built on rural land and the village of Arakste, which is divided into detached houses (DzS), apartment blocks (DzD) and mixed development (JA) areas. Taking into account that according to the current Rūjiena municipal regulations on territory use and building, detached houses (DzS), apartment blocks (DzD) and mixed development (JA) can be built in the detached house territories, the noise limit values applicable to the territories of
18 Available at: https://geolatvija.lv/geo/tapis#document_70
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
48
individual (detached, low-rise or farmstead) residential houses, children’s institutions, medi- cal, health and social care institutions are applied to the aforementioned territories. Infor- mation on the classification of the use functions of the development areas is summarised in Table 4.1.1.
According to the amendments to cabinet regulation no. 16 of 7 January 2014 Noise Assess- ment and Management effective as of 3 November 2023, different noise limit values are ap- plied to noise from traffic and industrial sources. Considering that WTGs are classified as in- dustrial sites, the environmental noise limit values applicable to industrial sites were used in the noise assessment . Information on the noise limit values applied is summarised in Ta- ble 4.1.2.
Table 4.1.1. Classifications of the functions of use of the built-up areas
Function of the built-up area use (cabi- net regulation no. 16, on noise assess-
ment and management (07 January 2014))
Rūjienas municipality territory use and development regulations
(TIAN)
Private (detached, low-rise or farm- stead) residential house, children’s fa- cility, medical, health and social care fa- cility development site
Detached housing areas (DzS)
Apartment block areas (DzD)
Mixed development areas (JA)
Table 4.1.2. Applicable noise limit values in Latvia: noise from industrial sources
Land use function
Noise limit values
Lday
(dB(A))
Levening
(dB(A))
Lnight
(dB(A))
Private (detached, low-rise or farmstead) residential house, chil- dren’s facility, medical, health and social care facility develop- ment site
55 50 45
Pursuant to paragraph 2.8 of cabinet regulation no. 16 of 7 January 2014, on noise assessment and management, construction work that have been approved by the local municipality is not subject to the environmental noise limit values set out in the regulations, and therefore the impact of construction work on noise levels in the vicinity of the proposed activity area is not quantified in this noise assessment.
Environmental noise – Estonia
The environmental noise indicators, their application and the assessment methods are deter- mined by Estonian cabinet regulation no. 71 of 21 December 2016, on ambient noise limits, methods of measurement, determination and assessment of noise levels (orig. Välisõhus le- viva müra normtasemed ja mürataseme mõõtmise, määramise ja hindamise meetodid)19. Es- tonia, like Latvia, applies different noise limit values to noise from traffic and industrial sources. However, pursuant to the current laws on environmental noise, the following applies:
19 Available at: https://www.riigiteataja.ee/akt/121122016027
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
49
- Ambient noise limits – the maximum permissible sound level above which significant harm to the environment is likely to result and, if exceeded, appropriate noise abate- ment measures must be taken – applies to existing residential areas;
- Ambient noise objectives – maximum permissible noise levels in areas with new build- ings - applies to the planned residential development areas.
According to these regulations, the environmental noise limit values should be applied in ac- cordance with the main land use designations in the spatial plan of the municipality and taking into account areas with residential development. After assessment of the available infor- mation, it can be concluded that in the proposed activity area there are farmsteads built on rural land and there are no separate areas earmarked for residential development in the mu- nicipal spatial plan.
In accordance with those regulations, the residential areas surrounding the proposed activity site have industrial noise limits applicable to Category II development areas, such as educa- tional establishments, healthcare and social welfare establishments, residential areas and green spaces. The residential development area is determined based on the topographic in- formation available from the Estonian Land Service ( Maa-Amet) geoportal20.
Information on the applicable industrial noise limit values is summarised in Table 4.1.3.
Table 4.1.3. Applicable noise limit values in Estonia: industrial noise
Land use function
Noise limit values Noise target values
Lday
(dB(A))
Lnight
(dB(A))
Lday
(dB(A))
Lnight
(dB(A))
Category II – educational establishments,
healthcare and social welfare establishments,
residential areas, green areas
60 45 50 40
Pursuant to Estonian cabinet regulation no. 71 of 21 December 2016, on ambient noise limits, methods of measurement, determination and evaluation of noise levels, construction work is subject to the ambient noise limit values during the hours from 9 pm to 7 am.
Considering that, according to the information provided by the proponent, the construction work will take place mainly during daytime hours, the impact of the construction work on the noise levels in the vicinity of the proposed activity site has not been quantified in this noise assessment.
The environmental noise limit values set in Latvia and Estonia apply to all sources of industrial noise, regardless of the nature of their activities. Although a similar approach is used in most other European countries, the impact of noise on public health may depend not only on the quantitative values of the noise, i.e. decibels, but also on the type of noise source. The World Health Organization has developed guidelines recommending a limit value of 45 dB(A) Ldvn for noise from WTGs21. Although the WHO-recommended limit values are only a guideline, the
20 Available at: https://geoportaal.maaamet.ee/eng/Spatial-Data/Estonian-Topographic-Database-p305.html 21 Available at: https://cdn.who.int/media/docs/default-source/who-compendium-on-health-and-environment/who_com- pendium_noise_01042022.pdf?sfvrsn=bc371498_3
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
50
recommended limit value was also used to assess the impact of the proposed wind farm when working on this assessment.
Low-frequency noise
Latvia and Estonia have not adopted legislation stipulating specific limits and assessment pro- cedures for low-frequency noise which can be used to identify a sufficiently safe distance from residential buildings at which a WTG installation would be permissible without causing harm to public health, and therefore the EIA process looked at the experience of other countries in the matter. In recent years, published assessments of the impact of WTGs have focused more on low-frequency noise, but in most cases the calculated values are compared with audibility thresholds or limit values for low-frequency noise in the working environment, because in most European countries, as in Latvia, low-frequency noise from WTGs is not yet limited by regulations setting out limit values.
Looking at the experience of other European countries, specific limits for indoor low-fre- quency noise from WTGs have been set only in Denmark (Danish ministry of the environment and food order no. 1736 of 21 December 2015), where both a procedure for assessing low- frequency sound and a limit value binding on all wind farm developers have been established. The order stipulates that the cumulative low-frequency (10-160 Hz) noise level from WTGs in residential buildings cannot exceed 20 dB at wind speed of 6 m/s and 8 m/s (10 m above the ground). Compliance of any existing or planned activity with the indoor noise limit value is determined by calculations because measurements are significantly affected by low-frequency noise from natural and other anthropogenic noise sources. On 7 February 2019, the Danish Ministry of the Environment and Food issued an order, order no. 135, to supplement the pre- vious regulation. Order no. 135 additionally includes sound insulation corrections for summer house or cottage type buildings, which are characterised by significantly lower sound insula- tion levels than permanently occupied buildings.
4.1.2 Impact assessment approach
Both the forecasted ambient noise and low-frequency noise pollution levels have been calcu- lated for the EIA report.
Environmental noise
The environmental noise calculations were done using IMMI 2023 software (developed by Wölfel Engineering GmbH & Co. KG) (licence no. S001/00757), where the methods set out in regulation no. 16 of the cabinet of ministers of Latvia of 7 January 2014, on noise assessment and management, and regulation no. 71 of the cabinet of ministers of Estonia of 21 December 2016, on ambient noise limits, noise level measurement, determination and assessment meth- ods were used for the calculations.
Pursuant to Annex 1, paragraph 5 of the regulations of the cabinet of ministers of Latvia, the input data for the calculation models generated by the noise calculation software are attached as Annex E.1 (in electronic format) to the EIA report.
The following noise indicators were applied to assess environmental noise in Latvia:
- Daytime noise score Lday indicating discomfort during the day. This is the A-weighted long-term average sound level (dB(A)), which represents the annual average daytime noise level. Determined taking into account all days (as a portion of 24 h) in a year.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
51
- Evening Noise Indicator - Lvakars indicating discomfort in the evening. This is the weighted long-term average sound level (dB(A)) taken over all evenings (as part of the day) during one year.
- Night noise score Lnight indicating sleep disturbance caused by noise. This is the weighted long-term average sound level (dB(A)) determined taking into account all nights (as a portion of 24h) in a year.
- 24h noise score L24h indicating the overall discomfort caused by environmental noise.
Pursuant to Annex 1, paragraph 1.2, of the regulations, the assessment and modelling of noise performance assumed that daytime hours are from 7 am to 7 pm, evening hours are from 7 pm to 11 pm, and nighttime hours are from 11 pm to 7 am. Noise was assessed at 4 m above the ground.
Noise was assessed at 4 m above the ground. In accordance with the regulations, the limit values for ambient noise are set for annual average noise levels.
The following noise indicators were applied to assess environmental noise in Estonia:
- Daytime noise score Lday indicating discomfort during the day. This is the A-weighted long-term average sound level (dB(A)), which represents the annual average daytime noise level. Determined taking into account all days (as a portion of 24 h) in a year.
- Night noise score Lnight indicating sleep disturbance caused by noise. This is the weighted long-term average sound level (dB(A)) determined taking into account all nights (as a portion of 24h) in a year.
- 24h noise score L24h indicating the overall discomfort caused by environmental noise.
Pursuant to Annex 1 of the regulations, the assessment and modelling of noise performance assumed that daytime hours are from 7 am to 11 pm and nighttime hours are from 11 pm to 7 am.
Noise was assessed at 2 m above the ground. In accordance with the regulations, the limit values for ambient noise are set for annual average noise levels.
The noise values are plotted in increments of 5 dB(A).
Low-frequency noise
For the assessment and modelling of low-frequency noise, the WindPro software (by EMD International), which has been developed for the assessment of impact from WTGs and in- cludes a special module for the calculation of low-frequency noise in accordance with the re- quirements of order 135 of the Ministry of the Environment and Food. The input and resulting data of the calculation models generated by the software are attached in Annex E.2 of the EIA report.
Pursuant to order 135 of the Danish Ministry of the Environment and Food, the level of low- frequency noise pollution from WTGs should be determined through calculations. The order stipulates that the purpose of the impact assessment is to ascertain and, if necessary, limit the level of low-frequency noise in residential premises, and that the assessment should be based on noise emission data from the WTGs at wind speeds of 6 m/s and 8 m/s at 10 m above the ground.
Order no. 135 of the Danish Ministry of the Environment and Food sets forth sound insulation values for two types of enclosure structures of the building (see Table 4.1.2). The calculations
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
52
assume that the sound insulation performance of residential buildings in the vicinity of a wind farm is that of a typical residential building. According to order no. 135 of the Danish Ministry of the Environment and Food, the low-frequency noise level for each 1/3 octave band tone in a building is forecast by the following equation:
= , − 10 ∗ log 2 + ℎ2 − 11 + ∆ −
∆ − ∆,
where: LpALF - noise level for a 1/3 octave band tone (dB); LWA,ref - WTG sound power level (dB); l - distance from the WTG foundation to the receiving point (m); h - WTG nacelle height (m); ΔgLF - adjustment for ground surface; ΔLσ - adjustment for sound insulation;
ΔLa - adjustment for atmospheric absorption ( ∗ 2 + ℎ2).
Information on the applicable adjustments for ground surface, sound insulation and atmos- pheric absorption is summarised in Table 4.1.3.
Table 4.1.3. Adjustment for use in low-frequency noise calculations
Adjust- ments
1/3 octave band frequency, Hz
10 12.5 16 20 25 31.5 40 50 63 80 100 125 160
ΔgLF 6.0 6.0 5.8 5.6 5.4 5.2 5.0 4.7 4.3 3.7 3.0 1.8 0.0
ΔLσ typical residential building
4.9 5.9 4.6 6.6 8.4 10.8 11.4 13.0 16.6 19.7 21.2 20.2 21.2
ΔLσ sum- merhouse
6.8 3.9 0.4 -0.2 4.8 6.2 8.4 10.5 11.9 11.9 16.0 17.5 17.9
aa (dB/km) 0.0 0.0 0.0 0.0 0.02 0.03 0.05 0.07 0.11 0.17 0.26 0.38 0.55
To estimate the cumulative low-frequency noise level from each source over the entire low- frequency range, the calculated noise level for each 1/3-octave band frequency is summed up using the following equation:
, = 10 ∗ 10 , 10,
and the total noise from multiple WTGs is calculated using the following equation:
= 10 ∗ log ( 10 110+ 10 210+. . . ).
4.1.3 Description of the existing situation: environmental noise
In order to identify the level of environmental noise pollution from other noise sources unre- lated to the proposed activity in and around the area of the proposed activity, information on environmental noise sources in the vicinity of the proposed activity was collected as a part of the noise assessment. Considering that legislation in both Latvia and Estonia stipulates noise limit values applicable to noise from industrial sources, information on industrial noise sources
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
53
in the vicinity of the proposed Lode wind farm was collected for the noise assessment to assess potential cumulative impact.
According to the available information, there are no industrial noise sources in the vicinity of the proposed wind farm. The most significant noise sources in the vicinity of the proposed wind farm are national roads, which are subject to environmental noise limits for traffic noise under Latvian and Estonian legislation. In view of the above, this noise assessment does not consider traffic noise separately.
4.1.4 Impact during construction of WTGs: environmental noise
The construction of the Lode wind farm is expected to be completed within two years. Con- sidering that the construction of the wind farm will take place in phases, the noise associated with the wind farm construction processes can be described as non-permanent. According to the information provided by the proponent of the proposed activity, to avoid disturbance to residents at night, the construction work in the area of the proposed activity will be carried out mainly during the day and in the evening (the exact construction organisation plan will be approved by the construction board during the development of the construction design). Alt- hough most of the construction work is not expected to cause disturbance to the residents at night, it is possible that some short-term activities may be carried out at night. For example, installation of WTGs is only possible in specific wind conditions. Therefore, if the installation of a WTG in suitable meteorological conditions is not possible during the day, it could be per- formed at night. It should be noted that nighttime construction will be an exceptional activity and not a general practice in the organisation of the wind farm construction work.
According to paragraph 2.8 of Latvian cabinet regulation no. 16, on noise assessment and management, construction work that has been approved by the local municipality is not sub- ject to the environmental noise limit values specified in the regulations. However, according to Estonian cabinet regulation no. 71, of 21 December 2016, on ambient noise limits, methods of measurement, determination and evaluation of noise levels, any construction work is sub- ject to the ambient noise limit values from 9 pm to 7 am. Considering that, according to the information provided by the proponent, the construction work will take place mainly during daytime hours, the impact of the construction work on the noise levels in the vicinity of the proposed activity site has not been quantified in this noise assessment.
The assessment of the construction process of the proposed wind farm has identified the fol- lowing construction phases that are associated with increased noise:
- site preparation;
- construction of access roads and assembly sites;
- realigning reclamation systems;
- construction of utilities;
- WTG foundation construction;
- WTG delivery;
- WTG installation;
- site recultivation.
The site preparation, reclamation realignment, utilities construction, WTG installation and site reclamation phases mainly involve the operation of certain machinery units at specific con- struction sites. Construction of access roads and assembly sites, construction of the WTG
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
54
foundations and delivery of the WTGs are associated with a significant increase in traffic in the vicinity of the proposed activity.
The proponent envisages that the noise emission of the equipment used in the construction work will not exceed the noise emission limit values of the equipment set out in Annex 2 to cabinet regulation no. 163 of 23 April 2002, regulations on noise emission from equipment for use outdoors.
Taking into account the overall planned construction work duration, the major construction work locations in relation to residential areas, construction work timing and the noise emission limits of the machinery used, noise from the construction work or construction activities re- lated to the installation of power transmission lines in the area of the proposed activity is assessed as a temporary or occasional nuisance not likely to have a significant effect on public health.
During the construction of WTGs and related infrastructure, potentially the most significant noise pollution in the wider area will come from transportation of materials and equipment. According to the specifications provided by the WTG manufacturers:
- construction of new access roads – up to 30 lorries per 100 m of new road;
- construction of installation sites – up to 140 lorries per site;
- WTG construction – up to 280 lorries per WTG;
- main crane assembly – up to 55 lorries per WTG.
Based on the above information, the average number of lorry trips over a two-year period in the event of construction of 19 WTGs is expected to be around 34 lorries per day (round trip) or 3 lorries per hour (during the day). Considering that the exact transport route is yet un- known, but assuming that the existing traffic along the proposed route is not high, the noise levels in the vicinity of the roads would be expected to increase by 3 to 5 dB(A). Although such an increase in noise level may appear significant, it is not expected that the noise level in the vicinity of the motorway will exceed the regulatory limits for environmental noise.
Most of the construction materials and equipment are not expected to be transported at night, but the delivery of large components of the WTGs may be done at night when the traffic on the roads is low, thus not causing disruptions for the users of the public road infrastructure.
4.1.5 Impact during the operation of the operation of the Lode wind farm: environ- mental noise
A number of possible technological alternatives, i.e. different WTG models, are being assessed as a part of the environmental impact assessment. Taking into account that the wind farm design and the choice of the WTG model may differ from the ones assessed in this EIA report, the approach taken in the context of the technological alternatives is to assess the worst-case scenario, i.e. the noisiest turbine, by setting emission limit values, where necessary, that would ensure compliance of the proposed activity with the statutory regulations, regardless of the chosen WTG model. Although all of the WTGs analysed in this assessment also offer special operating modes with lower noise emission values, possibility of use of these modes in the context of environmental noise is not assessed in this assessment, as all the modes offered by the manufacturers are also associated with significantly lower turbine efficiencies.
In order to identify the WTG model with the highest noise pollution, i.e. to identify the poten- tially most unfavourable situation, the noise emission levels of all WTG models assessed in this
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
55
assessment were compared with each other during the EIA process. For the comparison of emission values, data provided by the WTG manufacturers based on noise measurements ac- cording to IEC 61400-11, as well as data on wind speed, which can have a significant impact on the turbine noise level, were used. Comparison of the noise emission data from different WTG models shows that they are essentially similar: as wind speed increases and the power generation potential of the WTG increases, the noise level of the plant also increases, but once the plant reaches its rated capacity, the noise level of WTGs does not increase any further. Detailed information on the WTG models that may be installed in the Lode wind farm is pro- vided in Chapter 3 of the EIA report, while information on the sound power levels of the WTG models at a given wind speed is summarised in tables 4.1.4 to 4.1.6.
Table 4.1.4. Vestas V162 – 6.2 sound power level power level
Blade type Sound power (LW(A)) level (dB) at wind speed (m/s)
3 4 5 6 7 8 9 ≥10
Standard (ST) 96.7 96.9 97.1 99.0 102.0 104.8 107.1 107.6
Enhanced aerodynamics (STE) 93.9 94.1 94.3 96.2 99.2 102.0 104.3 104.8
Table 4.1.5. Vestas V172-7.2 sound power level power level
Blade type Sound power (LW(A)) level (dB) at wind speed (m/s)
3 4 5 6 7 8 9 ≥ 10
Standard 97.8 97.8 98.4 101.8 105.4 108.8 110.1 110.1
Enhanced aerodynamics (STE)
94.6 94.6 95.2 98.6 102.2 105.6 106.9 106.9
Table 4.1.6 Sound power level generated by Nordex N163 – 5.7
Blade type Sound power (LW(A)) level (dB) at wind speed (m/s)
3 4 5 6 7 8 9 ≥10
Standard (ST) 97.5 97.5 97.5 100.8 100.8 105.9 109.2 109.2
Enhanced aerodynamics (STE) 95.5 95.5 95.5 98.8 103.7 103.7 107.2 107.2
Table 4.1.7 Sound power level of Siemens Gamesa SG 470-6.6
Blade type Sound power level (LW(A)) (dB) at wind speed m/s
3 4 5 6 7 8 9 ≥10
Standard (ST) 92.0 92.0 95.7 99.1 102.5 104.7 106.6 107.0
Not only the sound emission values of the WTGs have significant effect on the long-term noise pollution performance of the WTG, but also the turbine on time at certain emission parame- ters, i.e. wind speed. To calculate the approximate lifetime of a WTG, the ERA5 model devel- oped by the European Centre for Medium-Range Weather Forecasts (ECMWF) was used to estimate wind speed in the area of the proposed operation for the period from 1 January 2014 to 31 December 2023. Using the detailed wind speed information at 200 m above ground
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
56
(average over a 10-year period), the potential WTG on time during the day, evening and night was calculated.
The total noise emissions from each of the WTG models assessed in the environmental impact assessment process, according to the collected information on wind speeds in the vicinity of the proposed operation, are provided in Figure 4.1.1. For modelling purposes, the WTG on time does not take into account process brakes in the turbine operation or the need to shut down the WTG in the context of other environmental aspects, such as to reduce the flicker duration or to ensure the protection of bats and birds. Based on the results of the calculations, it was concluded that the highest noise emissions would be generated by the installation of a Vesta V172-7.2 on a 166 m high mast with standard blades, hence this model has been used to estimate the ambient noise level of the WTGs in the vicinity of the planned Lode wind farm.
* improved blade aerodynamics
Figure 4.1.1. Comparison of noise from the WTG models assessed in the EIA report based on information on wind speed during periods in a day
The ambient noise levels from the WTGs were calculated for 47 residential areas situated up to 2 km from the proposed wind farm. Calculations were carried out for two location alterna- tives, i.e. the main alternative and the WTGs 16A and 17A alternative location which would be possible if a certificate from the building board that the property does not in fact exist is ac- quired and the cadastre and land register entries are deleted for the residential building reg- istered within the Inčkalni property.
According to the calculations, the operational noise level of the WTG model Vestas V172-7.2 MW with standard blades does not exceed the environmental noise limit values set by the cabinet of ministers in the nearby residential areas with any of the location alternatives. How- ever, it is expected that some residential areas in the vicinity of the proposed wind farm could have noise levels above the World Health Organization’s recommended limit values for WTG noise. The information on the calculated highest noise levels from a WTG is summarised in Tables 4.1.8 and 4.1.9. Environmental noise dispersion maps are provided in Annex 3 of the EIA report, where Figures 1 to 8 show noise dispersion maps prepared in accordance with
Day Evening Night
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
57
Latvian legislation, while Figures 9 to 14 show noise dispersion maps in accordance with Esto- nian legislation.
As part of the EIA process, one potential substation site is considered for the wind farm con- nection to the national electricity grid within the properties with the cadastral designations 965600300325 and 96560030141. Considering that the technical design of the substation will be determined during the construction design phase and that the noise emission characteris- tics of the proposed substation are currently unknown, the permissible noise level at the sub- station boundary has been calculated using data on the distance to the residential areas and the lower environmental noise limit of 45 dB(A) at night applicable to these residential areas as a part of this environmental impact assessment process.
The nearest residential building, known as Silāres (cadastral designation 96560030109001), is situated 368 m from the potential substation site. According to the calculations, the noise level at the substation border must not exceed 61 dB(A) to comply with the ambient noise limit value at night at the residential building in question.
It should be noted, however, that 266 m to the west of the potential substation site there is the building Amatnieki which is not registered as residential property in the state cadastre information system, but is in fact occupied (cadastral designation 96560030015001). If the building is subject to the environmental noise limit values, then according to the calculations, the noise level at the substation border must not exceed 59 dB(A) to comply with the ambient noise limit value at night at the residential building in question.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
58
Table 4.1.8. The highest calculated noise level in residential areas with WTG model Vestas V172-7.2 with standard blades (in Latvia – calculated at 4 m above ground)
Cadastral designa- tion of residential building
Cadastral designation of residential build- ing
Residential area name
AT – noise level measured in the develop- ment area
F – noise level measured 2 m away from the facade
Noise score, dB(A)
Noise limit value
Noise generated by WTG
main alternative
Noise generated by WTG
with 16A and 17A
Lday Leven-
ing Lnight Lday
Le-
vening Lnight L24h Lday
Leven-
ing Lnight L24h
96680010049001 Akmeņgravas (F)
55 50 45
37 38 38 44 36 37 37 44
96680010032001 Arakste (AT) 35 36 36 42 35 36 36 42
96680010066001 Arakstes muiža (AT) 35 36 36 42 35 36 36 42
96680010026001 Gaiduļi (F) 37 38 38 45 37 38 38 44
96680010022001 Grantskalni (F) 35 36 36 42 35 36 36 43
96680010088001 Inčkalni (F)** 41 42 42 48 43 44 44 50
96680010101001 Irbītes (AT) 34 35 35 41 34 35 35 41
96680010029001 Jaunotes (F) 34 35 35 42 35 36 36 42
96680010092001 Jaunpuriņi (F) 33 34 34 40 32 33 33 40
96680010063001 Kaktiņi (F) 38 39 39 46 38 39 39 45
96680010031001 Kalniņi (F) 34 35 35 41 35 35 36 42
96680020015001 Kalnsolteri (F) 29 30 30 37 28 29 29 36
96680010090001 Kazeri (AT) 35 35 36 42 35 36 36 42
96680010056001 Liepiņas (F) 37 38 38 44 38 39 39 45
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
59
Cadastral designa- tion of residential building
Cadastral designation of residential build- ing
Residential area name
AT – noise level measured in the develop- ment area
F – noise level measured 2 m away from the facade
Noise score, dB(A)
Noise limit value
Noise generated by WTG
main alternative
Noise generated by WTG
with 16A and 17A
Lday Leven-
ing Lnight Lday
Le-
vening Lnight L24h Lday
Leven-
ing Lnight L24h
96680010047001 Mālkalni (F) 39 40 40 46 40 40 41 47
96680010057001 Puigas (F) 40 40 41 47 41 42 42 48
96680010103001 Raudavas (F) 33 34 34 41 33 34 34 41
96680010007001 Robežnieki (F) 31 31 32 38 31 32 32 39
96680010058001 Sudmalas (F) 36 37 37 43 36 37 37 43
96680010065001 Upeslejas (F) 34 35 35 41 34 35 35 42
96680020047001 Vīķkalni (F) 30 30 31 37 28 29 29 36
96680010083001 Zelmeņi (AT) 35 36 36 42 35 35 36 42
* Residential areas highlighted in red are where the World Health Organization recommended limit value for WTG noise could be exceeded.
** Construction of WTG 16A and 17A would be possible if a certificate from the building board that the property does not in fact exist is acquired and the cadastre and land register entries are deleted for the residential building registered within the Inčkalni property.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
60
Table 4.1.9. The highest calculated noise level in residential areas with WTG model Vestas V172-7.2 with standard blades (in Estonia – calculated at 2 m above ground)
Cadastral designa- tion of the resi- dential building
Cadastral designation of the residential building
Residential area name AT - noise level measured in the development area
F – noise level measured 2 m away from the facade
Noise score, dB(A)
Noise limit value
Noise generated by WTG
main alternative
Noise generated by WTG
with 16A and 17A
Lday Lnight Lday Lnight L24h Lday Lnight L24h
117000362 Järve (AT)
60 45
30 31 37 29 30 36
120536586 Kabaku (AT) 29 30 36 27 28 34
117000020 Kapteni (AT) 28 29 35 27 28 34
117000469 Kase (AT) 33 34 40 33 34 40
117000021 Kaupluse (AT) 29 29 36 37 28 34
117007323 Keskla (AT) 31 32 38 32 33 39
117000845 Kivioja (AT) 30 31 37 29 30 36
117000042 Leisi (AT) 30 31 37 30 31 37
112027098 Lillemaa (AT) 40 40 47 38 39 45
117000168 Matti (AT) 29 30 36 29 30 36
117000611 Merevahi (AT) 34 35 41 35 35 42
117000540 Mitimaja (AT) 33 33 40 33 34 40
117000220 Nahksepa (AT) 30 31 37 31 32 38
117006444 Pilvemäe (AT) 32 32 39 32 33 39
117006486 Puka (AT) 30 31 37 30 31 37
117000419 Puusepa (AT) 31 31 38 32 32 38
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
61
Cadastral designa- tion of the resi- dential building
Cadastral designation of the residential building
Residential area name AT - noise level measured in the development area
F – noise level measured 2 m away from the facade
Noise score, dB(A)
Noise limit value
Noise generated by WTG
main alternative
Noise generated by WTG
with 16A and 17A
Lday Lnight Lday Lnight L24h Lday Lnight L24h
117000145 Roosimäe (AT) 31 31 38 30 31 37
117000295 Rulli (AT) 32 33 39 33 33 40
120599962 Ruuna (AT) 32 33 39 33 33 40
117000880 Tammiku (AT) 32 32 39 32 33 39
120535522 Ületee (AT) 31 32 38 32 33 39
117000518 Uue-Kogra (AT) 28 29 35 27 28 34
117000150 Uus-Liiva (AT) 29 30 36 29 30 36
112031439 Vesiveski (AT) 31 32 38 30 31 37
* Residential areas highlighted in red are where the World Health Organization recommended limit value for WTG noise could be exceeded.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
62
The results of the environmental noise calculations show that the proposed activity can be imple- mented in compliance with the noise management requirements of Latvian and Estonian legisla- tion; however, the construction of the loudest permissible stations is expected to result in noise levels in the four residential areas closest to the proposed wind farm exceeding the World Health Organization -recommended limit values for WTG noise.
Although there are currently no requirements for mandatory measures to avoid or reduce impact, it is recommended that the WTG noise level is taken into account in the process of selecting a WTG model to mitigate the impact of the proposed wind farm and that, if there are no other valid reasons for selecting a louder plant, a WTG with the lowest possible noise emission level should be selected and installed in Lode wind farm. The choice of quieter stations will allow bringing the level of impact in the nearest residential areas closer to or within the noise limits recommended by the World Health Organization for WTG noise.
4.1.6 Low-frequency noise assessment
Low-frequency noise levels were calculated for a total of 47 residential buildings situated within 2 km of the potential WTG construction sites, including residential buildings in Estonia. Calcula- tions assume that the sound insulation performance of the enclosure structure of all residential buildings is that of a typical building as specified for the Danish calculation method. Considering that in the context of the overall low-frequency noise level the noise generated by WTG at one specific frequency can be crucial, the impact of low-frequency noise has been analysed for all WTG models assessed in this EIA report.
Unlike environmental noise whose dispersion is mainly influenced by the absorption characteris- tics of the atmosphere, indoor low-frequency noise levels are also influenced by the sound insu- lation performance of the façade, which can vary dramatically for sounds of a certain frequency. The Danish standard requires WTG to comply with the limit value when operating at wind speed of 6 m/s and 8 m/s at 10 m above the ground.
Details of the calculations are attached in Annex E.2 of the Report, while Tables 4.1.10 and 4.1.11 summarise the results of the calculations.
According to the calculations, the main location alternative and the alternative with the construc- tion of WTG 16A and 17A, provided a certificate from the Building Board that the property does not in fact exist is acquired and the cadastre and land register entries are deleted for the residen- tial building registered within the Inčkalni property, the operation of the WTG models assessed in the EIA will not exceed the limit value of 20 dB(A) in the residential buildings situated in the vi- cinity of the wind farm.
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
63
Table 4.1.10. WTG low-frequency noise level (dB(A)) in residential buildings near the wind farm
Building cadastral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
96680010049001 Akmeņgravas (LV) 15.1 15.1 14.0 14.4 11.7 12.1 10.4 10.6 10.8 11.1 13.1 13.7 12.4 13.1
96680010032001 Arakste (LV) 14.1 14.1 13.1 13.4 10.8 11.2 9.5 9.7 9.9 10.2 12.2 12.9 11.6 12.3
96680010066001 Arakstes muiža (LV) 14.0 13.9 12.9 13.3 10.6 11.0 9.3 9.5 9.8 10.0 12.0 12.7 11.4 12.1
96680010026001 Gaiduļi (LV) 15.5 15.5 14.5 14.8 12.2 12.6 10.8 11.1 11.3 11.5 13.6 14.2 12.9 13.6
96680010022001 Grantskalni (LV) 14.5 14.5 13.5 13.8 11.2 11.6 9.9 10.1 10.3 10.6 12.6 13.2 11.9 12.6
96680010088001 Inčkalni (LV) 18.5 18.5 17.4 17.8 15.2 15.6 13.8 14 14.3 14.5 16.5 17.2 15.9 16.5
96680010101001 Irbītes (LV) 13.6 13.6 12.6 12.9 10.3 10.6 8.9 9.2 9.4 9.7 11.7 12.4 11.0 11.7
117000362 Järve (EE) 10.9 10.8 9.8 10.2 7.5 7.9 6.2 6.4 6.7 7.0 9.0 9.7 8.4 9.1
96680010029001 Jaunotes (LV) 14.1 14.1 13.1 13.4 10.8 11.1 9.5 9.7 9.9 10.2 12.2 12.9 11.5 12.2
96680010092001 Jaunpuriņi (LV) 13.0 12.9 11.9 12.3 9.6 10.0 8.3 8.5 8.7 9.0 11.0 11.7 10.4 11.1
120536586 Kabaku (EE) 10.8 10.7 9.7 10.1 7.4 7.8 6.1 6.3 6.6 6.9 8.9 9.6 8.3 9.0
96680010063001 Kaktiņi (LV) 16.5 16.4 15.4 15.8 13.1 13.5 11.8 12 12.2 12.5 14.5 15.1 13.8 14.5
96680010031001 Kalniņi (LV) 13.9 13.8 12.8 13.2 10.5 10.9 9.2 9.4 9.7 9.9 12.0 12.6 11.3 12.0
96680020015001 Kalnsolteri (LV) 10.4 10.4 9.4 9.8 7.1 7.5 5.8 6.0 6.3 6.6 8.6 9.3 7.9 8.6
117000020 Kapteni (EE) 10.1 10.1 9.1 9.4 6.7 7.1 5.4 5.7 5.9 6.3 8.3 8.9 7.6 8.3
117000469 Kase (EE) 13.5 13.4 12.4 12.8 10.1 10.5 8.8 9.0 9.3 9.5 11.6 12.2 10.9 11.6
117000021 Kaupluse (EE) 10.4 10.3 9.4 9.7 7.0 7.4 5.7 6.0 6.2 6.5 8.5 9.2 7.9 8.6
96680010090001 Kazeri (LV) 13.8 13.8 12.8 13.1 10.5 10.8 9.1 9.4 9.6 9.9 11.9 12.5 11.2 11.9
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
64
Building cadastral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
117007323 Keskla (EE) 12.9 12.8 11.8 12.2 9.5 9.9 8.2 8.4 8.7 9.0 11.0 11.6 10.3 11.0
117000845 Kivioja (EE) 11.0 10.9 9.9 10.3 7.6 8.0 6.3 6.5 6.8 7.1 9.1 9.8 8.4 9.2
117000042 Leisi (EE) 11.9 11.8 10.8 11.2 8.5 8.9 7.2 7.4 7.7 8.0 10.0 10.7 9.3 10.1
96680010056001 Liepiņas (LV) 15.7 15.6 14.6 15 12.3 12.7 11.0 11.2 11.4 11.7 13.7 14.4 13.1 13.7
112027098 Lillemaa (EE) 17.1 17.1 16.0 16.4 13.7 14.1 12.4 12.6 12.8 13.0 15.1 15.7 14.4 15.1
96680010047001 Mālkalni (LV) 17.0 16.9 15.9 16.3 13.6 14.0 12.3 12.5 12.7 13.0 15.0 15.6 14.3 15.0
117000168 Matti (EE) 12.3 12.3 11.3 11.7 9.0 9.3 7.7 7.9 8.1 8.4 10.5 11.1 9.8 10.5
117000611 Merevahi (EE) 13.7 13.7 12.6 13 10.3 10.7 9.0 9.3 9.5 9.8 11.8 12.4 11.1 11.8
117000540 Mitimaja (EE) 13.4 13.3 12.3 12.7 10.0 10.4 8.7 8.9 9.2 9.4 11.5 12.1 10.8 11.5
117000220 Nahksepa (EE) 12.4 12.4 11.4 11.7 9.0 9.4 7.7 8 8.2 8.5 10.5 11.2 9.9 10.6
117006444 Pilvemäe (EE) 12.9 12.9 11.9 12.2 9.6 9.9 8.2 8.5 8.7 9.0 11.0 11.7 10.4 11.1
96680010057001 Puigas (LV) 17.6 17.6 16.5 16.9 14.3 14.6 12.9 13.1 13.4 13.6 15.6 16.2 14.9 15.6
117006486 Puka (EE) 11.9 11.8 10.8 11.2 8.5 8.9 7.2 7.4 7.7 8.0 10.0 10.7 9.4 10.1
117000419 Puusepa (EE) 12.7 12.7 11.6 12 9.3 9.7 8.0 8.2 8.5 8.8 10.8 11.5 10.1 10.9
96680010103001 Raudavas (LV) 13.3 13.3 12.3 12.6 10.0 10.3 8.6 8.9 9.1 9.4 11.4 12.1 10.8 11.5
96680010007001 Robežnieki (LV) 12.7 12.7 11.7 12.1 9.4 9.7 8.1 8.3 8.5 8.8 10.8 11.5 10.2 10.9
117000145 Roosimäe (EE) 11.8 11.7 10.7 11.1 8.4 8.8 7.1 7.3 7.6 7.9 9.9 10.6 9.2 10
117000295 Rulli (EE) 13.0 12.9 11.9 12.3 9.6 10.0 8.3 8.5 8.8 9.1 11.1 11.7 10.4 11.1
120599962 Ruuna (EE) 13.4 13.3 12.3 12.7 10.0 10.4 8.7 8.9 9.2 9.4 11.5 12.1 10.8 11.5
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
65
Building cadastral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
96680010058001 Sudmalas (LV) 15.3 15.3 14.2 14.6 11.9 12.3 10.6 10.8 11.1 11.3 13.4 14.0 12.7 13.4
117000880 Tammiku (EE) 12.9 12.9 11.8 12.2 9.5 9.9 8.2 8.5 8.7 9.0 11.0 11.7 10.3 11.1
120535522 Ületee (EE) 12.9 12.9 11.9 12.3 9.6 10 8.3 8.5 8.7 9.0 11.0 11.7 10.4 11.1
96680010065001 Upeslejas (LV) 14.0 13.9 12.9 13.3 10.6 11 9.3 9.5 9.8 10.0 12.0 12.7 11.4 12.1
117000518 Uue-Kogra (EE) 10.2 10.2 9.2 9.6 6.9 7.2 5.6 5.8 6.1 6.4 8.4 9.1 7.7 8.5
117000150 Uus-Liiva (EE) 12.4 12.3 11.3 11.7 9.0 9.4 7.7 7.9 8.2 8.5 10.5 11.2 9.8 10.6
112031439 Vesiveski (EE) 11.3 11.3 10.3 10.6 8.0 8.3 6.7 6.9 7.1 7.4 9.4 10.1 8.8 9.5
96680020047001 Vīķkalni (LV) 11.3 11.3 10.3 10.7 8.0 8.3 6.7 6.9 7.1 7.4 9.5 10.1 8.8 9.5
96680010083001 Zelmeņi (LV) 13.9 13.9 12.8 13.2 10.5 10.9 9.2 9.4 9.7 9.9 12.0 12.6 11.3 12
Table 4.1.11. WTG low-frequency noise level (dB(A)) in residential buildings near the wind farm with WTG 16A and 17A
Building cadas- tral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
96680010049001 Akmeņgravas (LV) 14.8 14.8 13.8 14.1 11.5 11.9 10.2 10.4 10.6 10.8 12.9 13.5 12.2 12.9
96680010032001 Arakste (LV) 14.2 14.2 13.2 13.5 10.9 11.2 9.5 9.8 10.0 10.3 12.3 12.9 11.6 12.3
96680010066001 Arakstes muiža (LV) 14.1 14 13.0 13.4 10.7 11.1 9.4 9.6 9.8 10.1 12.1 12.8 11.5 12.2
96680010026001 Gaiduļi (LV) 15.2 15.2 14.1 14.5 11.9 12.2 10.5 10.7 11.0 11.2 13.3 13.9 12.6 13.3
96680010022001 Grantskalni (LV) 14.7 14.7 13.6 14 11.3 11.7 10.0 10.2 10.5 10.7 12.7 13.4 12.1 12.8
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
66
Building cadas- tral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
96680010088001 Inčkalni (LV)* 20.3 20.3 19.2 19.6 17.0 17.3 15.6 15.8 16.1 16.2 18.3 18.9 17.6 18.3
96680010101001 Irbītes (LV) 13.8 13.8 12.7 13.1 10.4 10.8 9.1 9.3 9.6 9.9 11.9 12.5 11.2 11.9
117000362 Järve (EE) 10.6 10.6 9.6 10.0 7.3 7.7 6.0 6.2 6.5 6.8 8.8 9.5 8.1 8.8
96680010029001 Jaunotes (LV) 14.5 14.4 13.4 13.8 11.1 11.5 9.8 10.0 10.3 10.5 12.5 13.2 11.9 12.6
96680010092001 Jaunpuriņi (LV) 12.8 12.8 11.8 12.2 9.5 9.9 8.2 8.4 8.6 8.9 10.9 11.6 10.3 11
120536586 Kabaku (EE) 10.5 10.5 9.5 9.8 7.1 7.5 5.9 6.1 6.3 6.7 8.7 9.3 8.0 8.7
96680010063001 Kaktiņi (LV) 16.3 16.3 15.3 15.6 13 13.4 11.6 11.9 12.1 12.3 14.4 15.0 13.7 14.4
96680010031001 Kalniņi (LV) 14.2 14.2 13.2 13.5 10.9 11.3 9.6 9.8 10.0 10.3 12.3 13.0 11.6 12.3
96680020015001 Kalnsolteri (LV) 10.2 10.2 9.2 9.6 6.9 7.3 5.6 5.8 6.1 6.4 8.4 9.1 7.7 8.5
117000020 Kapteni (EE) 9.9 9.8 8.8 9.2 6.5 6.9 5.2 5.4 5.7 6.0 8.0 8.7 7.4 8.1
117000469 Kase (EE) 13.6 13.6 12.6 12.9 10.3 10.7 9 9.2 9.4 9.7 11.7 12.4 11.1 11.8
117000021 Kaupluse (EE) 10.1 10.1 9.1 9.5 6.8 7.2 5.5 5.7 6.0 6.3 8.3 9.0 7.7 8.4
96680010090001 Kazeri (LV) 13.9 13.9 12.9 13.2 10.6 11.0 9.3 9.5 9.7 10.0 12 12.7 11.4 12.1
117007323 Keskla (EE) 13.1 13.0 12.0 12.4 9.7 10.1 8.4 8.6 8.9 9.2 11.2 11.8 10.5 11.2
117000845 Kivioja (EE) 10.7 10.7 9.7 10.1 7.4 7.7 6.1 6.3 6.5 6.8 8.9 9.5 8.2 8.9
117000042 Leisi (EE) 11.8 11.8 10.8 11.2 8.5 8.9 7.2 7.4 7.7 8 10.0 10.7 9.3 10.0
96680010056001 Liepiņas (LV) 16.1 16.1 15.1 15.4 12.8 13.2 11.4 11.7 11.9 12.1 14.2 14.8 13.5 14.2
112027098 Lillemaa (EE) 16.2 16.1 15.1 15.4 12.8 13.2 11.5 11.7 11.9 12.1 14.2 14.8 13.5 14.2
96680010047001 Mālkalni (LV) 17.6 17.5 16.5 16.8 14.2 14.6 12.9 13.1 13.3 13.5 15.6 16.2 14.9 15.6
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
67
Building cadas- tral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
117000168 Matti (EE) 12.3 12.3 11.2 11.6 8.9 9.3 7.6 7.8 8.1 8.4 10.4 11.1 9.8 10.5
117000611 Merevahi (EE) 14.0 13.9 12.9 13.3 10.6 11 9.3 9.5 9.7 10.0 12 12.7 11.4 12.1
117000540 Mitimaja (EE) 13.5 13.5 12.5 12.9 10.2 10.6 8.9 9.1 9.3 9.6 11.6 12.3 11.0 11.7
117000220 Nahksepa (EE) 12.6 12.6 11.6 11.9 9.3 9.6 8.0 8.2 8.4 8.7 10.7 11.4 10.1 10.8
117006444 Pilvemäe (EE) 13.1 13.1 12 12.4 9.7 10.1 8.4 8.6 8.9 9.2 11.2 11.9 10.5 11.2
96680010057001 Puigas (LV) 18.4 18.4 17.3 17.7 15.0 15.4 13.7 13.9 14.1 14.3 16.4 17 15.7 16.4
117006486 Puka (EE) 11.9 11.8 10.8 11.2 8.5 8.9 7.2 7.4 7.7 8.0 10.0 10.7 9.3 10.1
117000419 Puusepa (EE) 12.9 12.9 11.9 12.2 9.6 9.9 8.2 8.5 8.7 9.0 11.0 11.7 10.4 11.1
96680010103001 Raudavas (LV) 13.4 13.4 12.3 12.7 10.0 10.4 8.7 8.9 9.2 9.5 11.5 12.1 10.8 11.5
96680010007001 Robežnieki (LV) 13.0 13.0 12.0 12.3 9.7 10.0 8.4 8.6 8.8 9.1 11.1 11.8 10.5 11.2
117000145 Roosimäe (EE) 11.5 11.5 10.4 10.8 8.1 8.5 6.8 7.1 7.3 7.6 9.6 10.3 9.0 9.7
117000295 Rulli (EE) 13.1 13.1 12.1 12.5 9.8 10.2 8.5 8.7 8.9 9.2 11.2 11.9 10.6 11.3
120599962 Ruuna (EE) 13.3 13.3 12.3 12.6 10.0 10.3 8.7 8.9 9.1 9.4 11.4 12.1 10.8 11.5
96680010058001 Sudmalas (LV) 15.7 15.7 14.6 15 12.3 12.7 11.0 11.2 11.5 11.7 13.7 14.4 13.1 13.8
117000880 Tammiku (EE) 13.1 13.0 12.0 12.4 9.7 10.1 8.4 8.6 8.9 9.2 11.2 11.8 10.5 11.2
120535522 Ületee (EE) 13.2 13.1 12.1 12.5 9.8 10.2 8.5 8.7 9.0 9.2 11.3 11.9 10.6 11.3
96680010065001 Upeslejas (LV) 14.2 14.2 13.1 13.5 10.9 11.2 9.5 9.8 10.0 10.3 12.3 12.9 11.6 12.3
117000518 Uue-Kogra (EE) 10.0 9.9 9.0 9.3 6.6 7.0 5.3 5.6 5.8 6.2 8.2 8.8 7.5 8.2
117000150 Uus-Liiva (EE) 12.3 12.3 11.3 11.7 9.0 9.4 7.7 7.9 8.2 8.5 10.5 11.1 9.8 10.5
Estonian, Latvian & Lithuanian Environment, SIA
Lode wind farm construction environmental impact assessment report
68
Building cadas- tral designation
Name
Vestas V172-7.2 (ST)
Vestas V172-7.2 (STE)
Vestas V162-6.2 (ST)
Vestas V162-6.2 (STE)
Siemens Gamesa SG170-6.6 (ST)
Nordex N163-5.7 (ST)
Nordex N163-5.7 (STE)
6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s 6 m/s 8 m/s
112031439 Vesiveski (EE) 11.1 11.1 10.1 10.4 7.7 8.1 6.4 6.7 6.9 7.2 9.2 9.9 8.6 9.3
96680020047001 Vīķkalni (LV) 11.3 11.2 10.2 10.6 7.9 8.3 6.6 6.8 7.1 7.4 9.4 10.1 8.7 9.5
96680010083001 Zelmeņi (LV) 13.9 13.9 12.8 13.2 10.5 10.9 9.2 9.4 9.7 10.0 12.0 12.6 11.3 12.0
* Construction of WTG 16A and 17A would be possible if a certificate from the building board confirming that the property does not in fact exist is duly acquired, and the cadastre and land register entries are deleted for the residential building registered within the Inčkalni property.
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
69
4.1.7 Assessment of alternatives
The Environmental Impact Assessment compares several technological alternatives – the WTG models:
- Vestas V172 - 7.2 MW with standard blades and blades with improved aerodynamics; - Vestas V162 - 6.2 MW with standard blades and blades with improved aerodynamics; - Nordex N163-5.7. MW with standard blades and blades with improved aerodynamics. - Siemens Gamesa SG170 - 6.6 MW with standard blades.
Environmental noise
The environmental noise assessment concluded that there is no reason to impose restrictions on any of the technological alternatives assessed in the EIA process, as according to the calcu- lations, their operation would comply with the environmental noise limit values in both Latvia and Estonia. The alternative involving construction of WTG 16A and 17A would be possible if a certificate from the building board that the property does not in fact exist is duly acquired, and the cadastre and land register entries are deleted for the residential building registered within the Inčkalni property.
In some residential areas in the vicinity of the planned wind farm, the expected environmental noise level in the wind farm is 7.2 with the WTG model Vestas V172 The level of MW with standard blades installed could be higher than the World Health Organization recommended limits for WTG noise. A better technological choice in the context of public health protection would be a station design with a lower level of environment noise emissions, which would bring the level of impact closer or down to the noise limit values recommended by the World Health Organization for WTG noise.
Low-frequency noise
The assessment of low-frequency noise has shown that there are no reason to impose re- strictions on any of the technological alternatives assessed in the EIA process, as according to the calculations, their operation would not exceed the limit value of 20 dB(A) in nearby resi- dential buildings, including, if in the event of construction of WTG 16A and 17A a certificate from the building board that the property does not in fact exist is duly acquired, and the ca- dastre and land register entries are deleted for the residential building registered within the Inčkalni property. In the context of public health protection, the choice of a station model with a lower level of low-frequency noise is considered a better technological alternative.
It should also be emphasised that there are WTG models available on the market which would have lower noise levels and that the proponent of the proposed activity is also free to choose WTG models not assessed in this report. In such an event, during the construction design phase it should be demonstrated that the chosen technological alternative ensures that the low-frequency noise level in residential buildings does not exceed the limit of 20 dB(A).
4.2 Flicker effect
This section of the report assesses the potential impact of flicker from wind turbines on resi- dential areas in Latvia and in the Estonian part in the vicinity of Lode wind farm.
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
70
The flicker (also known as disco effect or shadow flicker22) is caused by the movement of the rotor blades as they periodically cover the sun and create moving shadows on the ground and on the surface of various objects (see Figure 4.2.1). The flickering effect is only noticeable when the sun is shining, but on days when the sun is obscured by clouds, the effect is not observed.
Figure 4.2.1. Illustrative representation of the area affected by flicker
Although there are no studies showing long-term negative effects of the flicker effect on public health, it is considered to be one of the nuisances to residents in the vicinity of a WTG. This impact should therefore be assessed during wind farm planning. According to guidelines de- veloped by the Irish Department of Housing, Local Government and Heritage23, if the distance between the turbine and the receiver (e.g. a residential house) is greater than about 500 me- tres, the flicker is usually only observed at sunrise or sunset when the shadow of the turbine is longest. At distances exceeding ten rotor diameters, the likelihood of flicker effects is low.
The flicker effect mainly affects people indoors. This is because the sunlight shining through the house window and illuminating the room in a limited or focused way is interrupted by the shadow of the wind turbine blade, creating a ‘disco effect’. Outdoors, the light reaches a per- son from a much less focused source than through a window in a confined space, so the flick- ering effect is less disturbing when outdoors. Therefore, the assessment of the impact of flicker is usually performed for residential buildings situated close to wind farms.
WTG flicker can be accurately forecasted by using special software to calculate the flicker time taking into account the time, wind direction and sunny days in a month. If necessary, the flicker effect can be limited by automatically stopping the turbine during periods when they are likely to cause flicker in specific areas.
4.2.1 Legislative framework
Currently, there is no legislation in Latvia or Estonia that sets out how the flicker effect should be assessed and limit the permissible flicker level. A similar situation is observed in other EU
22 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/flicker 23 Wind Energy Development Guidelines for Planning Authorities, 2006. Available at: https://www.gov.ie/en/publication/f449e-wind-energy-development-guidelines-2006/
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
71
countries where the flicker limit values are mainly set in guidelines rather than statutory reg- ulations. This is because the flicker is seen and defined as a nuisance, but there is no scientific evidence of the impact of flicker on public health. Most of the countries which have set limit values base them on the German guideline limit values24.
An analysis of the regulation of flicker impact assessment and time limitation in other coun- tries identified the most commonly applied time limits for flicker impact25:
- maximum of 30 hours of flicker per year if calculated using the worst-case sce- nario method;
- maximum of 10 hours of flicker per year if calculated using a realistic scenario (in Germany, Belgium and Sweden, the recommended value is no more than 8 h per year);
- maximum 30 minutes per day if using both assessment scenarios. The worst-case scenario method for calculating the flicker effect time assumes that the sun shines continuously during daylight hours and is always perpendicular to the rotor blades, which are constantly moving. Calculating the flicker time using the realistic scenario method, the total flicker effect time is calculated based on historical observations of hours of sunshine, wind speed and wind direction in the area.
4.2.2 Impact assessment approach
WindPro software (developed by EMD International) which has been developed to assess the impact of wind farms and includes a special module for calculating the flicker effect is used for the assessment of the flicker effect. The calculations are based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model ERA5, which provides wind speed and wind direction data for the area of the proposed operation for the period from January 2014 to December 2023. For the real-time scenario, the average sunshine hours data of the nearest national grid meteorological station were used. The nearest meteorological station is Rūjiena, but its data is only available up to 2006, so the data from Zoseni station for the last 10 years is used (see Table 4.2.1).
Table 4.2.1. Average sunshine hours
Average sunshine hours (h/day) in a month
I II III IV V VI VII VII IX X XI XII
1.10 2.63 5.69 8.89 10.09 10.48 9.56 8.39 6.96 3.64 1.36 1.02
The flicker time was calculated for those residential buildings in Latvia which are registered in the state cadastre information system, while for residential development areas in Estonia it was determined based on the topographic information available from the Estonian land ser- vice ( Maa-Amet) geoportal26. The calculation model includes all residential buildings situated
24 Länderausschuss für Immissionsschutz, Arbeitskreis Lichtimmissionen, in Vorbereitung, Hinweise zur Er- mittlung und Beurteilung der optischen Immissionen von Windenergieanlagen (WEA-Schattenwurf-Hinweise), 2002 25 Guidelines for the Environmental Impact Assessment of Wind Turbines and Recommendations on Require- ments for the Construction of Wind Turbines, 2011 26 Available at: https://geoportaal.maaamet.ee/eng/Spatial-Data/Estonian-Topographic-Database-p305.html
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
72
up to 3 km around the planned wind farms as receivers. Homesteads and residential houses in villages are defined in the calculation model as points with windows perpendicular to all planned WTG (greenhouse technique).
WTG flicker impact time depends on a number of factors:
- turbine height, - rotor diameter, - wind conditions (WTG operation mode) - sun elevation above the horizon in a year and in a day.
The impact was assessed for all WTG models listed in Table 3.2.1 (Siemens Gamesa SG170, Vestas V162, Vestas V170, Nordex N163) assuming that they would be built under the worst- case scenario method on the highest available mast specified in the table. For the purposes of this assessment, the flicker times are assessed using the limit values applied in other countries as described above, with the flicker effect calculated using the real-time scenario with the lowest limit value, i.e. 8 h/year.
4.2.3 Impact during operation
Detailed information on the results of the flicker time calculations is provided in Annex 4 of the Report, while Annex E.3 of the Report provides the summary of the WindPro calculation files.
According to the worst-case scenario method calculations (assuming continuous sunshine dur- ing the day always perpendicular to the continuously moving rotor blades), residential areas within approximately 1.5–2 km of the outermost wind turbines in the survey area may exceed the limit values set out in the guidelines in Chapter 4.2.1 (30 flicker hours per year). At dis- tances greater than the above, the flicker limit values are not expected to be exceeded. How- ever, as the distance decreases, the chance of exceeding the guideline limits increases every hundred metres.
Looking at the results of the flicker effect calculation, the flicker time per WTG ranges from 8 to 220 hours per year using the worst-case scenario method and from 30 min to 50 hours per year using the realistic scenario method depending on the chosen turbine model. According to the calculations, none of the calculation scenarios and selected technological alternative 8 turbines, i.e. L_03, L_05, L_07, L_08, L_11, L_12, L_13, L_18, produced flicker effect in the residential areas near the planned wind farm, while in the case of Nordex N163, no flicker effect produced by turbines L_04, L_09 and L_14, making it a total of 11 turbines that did not cause flicker effect in the residential areas in the vicinity of the proposed wind farm.
The highest possible exceeded flicker time limit values in residential areas are summarised in Table 4.2.2, which shows the maximum flicker time for all WTG models assessed. The results of the flicker effect calculation show that flicker time could exceed the 8 hours per year limit value of the German guidelines for the real-time scenario for up to 9 residential development areas depending on the WTG model alternative and the 30 h/year limit value with the worst- case scenario calculation method for up to 11 residential development areas depending on the WTG model alternative. The flicker time of each WTG model in the residential area is sum- marised in Annex 4. It should be noted that flicker time of Nordex N163 in residential areas is lower than for the other assessed WTG models, while the estimated highest cumulative flicker time per year (using the realistic and worst-case scenario methods) in residential areas could
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
73
potentially be produced by Siemens Gamesa SG170 and Vestas V172. Figures 4.2.2 to 4.2.5 visualise the results of the calculation of the flicker effect time for each WTG model considered in the Report, obtained at using the worst-case scenario calculation method.
Table 4.2.2. Residential areas where flicker time limit values are expected to be exceeded specifying the highest value likely to be exceeded
Homestead name
Maximum calculated flicker time (hh:mm)
Worst-case scenario method Realistic scenario
method
h/year h/d h/year
Kaktiņi ≤69:22 ≤0:42 ≤19:07
Akmeņgravas ≤40:02 ≤0:44 ≤12:06
Liepiņas ≤46:12 ≤0:31 ≤12:41
Mālkalni ≤46:54 ≤0:37 ≤11:35
Gaiduļi ≤0:40
Puigas ≤38:08 ≤10:09
Sudmalas ≤32:42 ≤0:34 ≤10:01
Inčkalni ≤79:36 ≤01:14 ≤22:12
Ruuna ≤31:34 ≤10:39
Lillemaa ≤55:18 ≤0:45
Sooaru-Ennu ≤36:08
The report also assessed the turbine L_16 and L_17 location alternatives, i.e. L_16A and L_17A (see Chapter 3.3). The highest possible exceeded flicker time limit values in residential areas assessing the two WTG location alternatives are summarised in Table 4.2.3, which shows the maximum flicker time for all WTG models evaluated. The results of the flicker effect calcula- tion show that the flicker time could exceed the of the German guideline specified 8 h/year limit with realistic scenario and the 30 h/year limit value with the worst-case scenario method, in both cases up to 8 residential development areas depending on the WTG model alternative, which is 1 residential development area with the realistic scenario and 3 residential develop- ment areas for the worst-case scenario method fewer than for the main alternative. The flicker time of each WTG model in the residential area is summarised in Annex 4.
Table 4.2.3. Residential areas where flicker time limit values are expected to be exceeded in the event of selection of L_16A and L_17A location alternative specifying the highest value likely to be exceeded
Homestead name
Maximum calculated flicker time (hh:mm)
Worst-case scenario method Realistic scenario
method
h/year h/d h/year
Akmeņgravas ≤40:02 ≤0:44 ≤12:06
Liepiņas ≤41:24 ≤0:36 ≤11:43
Mālkalni ≤85:58 ≤01:14 ≤24:22
Gaiduļi ≤0:40
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
74
Homestead name
Maximum calculated flicker time (hh:mm)
Worst-case scenario method Realistic scenario
method
h/year h/d h/year
Puigas ≤65:55 ≤0:43 ≤18:52
Irbītes ≤08:00
Sudmalas ≤42:55 ≤0:34 ≤12:51
Jaunotes ≤08:01
Ruuna ≤31:34 ≤10:39
Lillemaa ≤48:52 ≤0:45
Sooaru-Ennu ≤36:08
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
75
Figure 4.2.2. Flicker impact areas for Siemens Gamesa SG170
Legend
The map is referenced to the Latvian coordinate system LKS- 92. The digital map by LGIA was used as a base at a scale of
1: 50000.
Flicker impact time (h/year)
WTG locations
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
76
Figure 4.2.3. Flicker impact areas for Vestas V162
Legend
WTG locations
Flicker impact time (h/year)
The map is referenced to the Latvian coordinate system LKS- 92. The digital map by LGIA was used as a base at a scale of
1: 50000.
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
77
Figure 4.2.4. Flicker impact areas for Vestas V172
Legend
WTG locations
Flicker impact time (h/year)
The map is referenced to the Latvian coordinate system LKS-92. The digital map by LGIA was used as a base at a
scale of 1: 50000.
Estonian, Latvian & Lithuanian Environment, SIA
Environmental impact assessment report on the construction of Lode wind farm
78
Figure 4.2.5. Flicker impact zones for Nordex N163
Legend
WTG locations
Flicker impact time (h/year)
The map is referenced to the Latvian coordinate system LKS-92. The digital map by LGIA was used as a base at a
scale of 1: 50000.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
79
4.2.4 Mitigation measures
Calculations have shown that the WTG flicker effect from can cause disturbance above the recommended limit values in residential areas in the vicinity of the proposed activity site re- gardless of the WTG model chosen. The only technical solution to reduce the flicker time is to stop the flickering turbines during periods when they are likely to produce flicker in residential areas.
The manufacturers of all the WTG assessed as part of this EIA process provide their plants with operation modes that automatically shut down the WTGs at certain times. These operation modes can be set using both theoretical and actual sunshine times. The shutdown mode based on theoretical sunshine times is the simplest technological solution and does not re- quire any additional equipment. This solution involves shutting down specific WTGs during periods when their operation could theoretically cause flicker regardless of whether the sun is shining at the time of the shutdown. This mode is set using the worst-case scenario method for calculating flicker time. The shutdown mode based on actual sunshine is a more techno- logically sophisticated solution, which involves shutting down certain WTGs only during peri- ods when they are likely to produce flicker and the sun is shining. In this mode, the wind farm must be equipped with equipment that detects when the sun is shining. All of the WTG man- ufacturers assessed in this EIA process also offer installation of this equipment.
By using one of the above modes, negative effect of WTG flicker may be reduced or prevented. It is recommended to organise the operation of Lode wind farm so that the WTG flicker effect in residential and public areas does not exceed the following flicker limit values:
- 30 hours of flicker per year if calculated using the worst-case scenario method;
- 8 hours of flicker per year if calculated using the realistic scenario;
- 30 minutes per day if using both assessment scenarios.
The area affected by WTGs where the calculated flicker time using the worst-case scenario calculation method exceeds the 30 h/year limit value is also outside the wind farm site. Con- sidering that new residential or public development is permitted there, it is recommended that during further planning and approval process, a solution is found to provide the equiva- lent level of protection for new development also if it is used for residential or public purposes.
At this stage, the WTG model and mast height have not yet been determined and the WTG locations may be revised during the construction design phase. If the chosen solution differs from those assessed in this report, the flicker effect time should be recalculated during the wind farm construction process, identifying the affected development areas and providing for appropriate shutdown regimes.
4.2.5 Assessment of alternatives
The environmental impact assessment compared different WTG model technological alterna- tives (see Table 4.2.3). It was concluded that flicker time of Nordex N163 in residential areas is lower than for the other assessed WTG models, while the estimated highest cumulative flicker time per year (using the realistic and worst-case scenario methods) in residential areas could potentially be produced by Siemens Gamesa SG170 and Vestas V172.
Looking at Table 4.2.4, which shows the changes in the flicker time and specific residential buildings depending on the technological alternative, it can be seen that the longest potential
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
80
impact time was with Siemens Gamesa SG170 - 6.6 model. The Vestas V162 - 6.2 and Nordex N163 models are expected to have the lowest flicker impact of the proposed alternatives in terms of the maximum possible flicker time. In terms of the number of affected residential buildings, the difference between Vestas V162-6.2, Vestas V172-7.2 and Siemens Gamesa SG170-6.6 is insignificant. Nordex N163 will have the least impact in terms of the number of residential buildings.
Table 4.2.3. Number of affected residential buildings for each technological alternative
Technological al- ternative
Number of affected residential buildings
Maximum possible flicker time per year
Maximum possible flicker time per day
Statistically possible flicker time per year
Vestas V162-6.2 10 8 9
Vestas V172-7.2 10 9 8
Nordex N163 7 8 7
Siemens Gamesa SG170-6.6
11 9 9
Table 4.2.4. Maximum flicker time with the worst-case and realistic scenario methods in residential buildings for the compared alternative models
Homestead name Vestas
V162-6.2 Vestas
V172-72
Nordex
N163-5.7
SIEMENS Gamesa
SG170-6.6
Maximum flicker time with the worst-case scenario method* (hh:mm)
Kaktiņi 63:17 69:22 64:23 68:21
Akmeņgravas 35:20 40:02 35:54 39:00
Liepiņas 42:36 40:10 36:55 46:12
Mālkalni 42:13 46:54 32:57 46:05
Puigas 35:09 >30:00 >30:00 38:08
Sudmalas 30:08 32:42 >30:00 32:18
Inčkalni 70:32 79:36 71:27 77:32
Ruuna >30:00 31:34 >30:00 31:06
Lillemaa 46:04 55:18 48:38 53:59
Sooaru-Ennu 32:02 36:08 >30:00 35:0
Maximum flicker time with the realistic scenario method** (hh:mm)
Kaktiņi 17:30 19:07 17:07 18:51
Akmeņgravas 10:40 12:06 10:24 11:46
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
81
Liepiņas 11:41 11:59 10:35 12:41
Mālkalni 10:24 11:35 09:16 11:22
Puigas 09:21 >08:00 >08:00 10:09
Sudmalas 09:13 10:01 >08:00 09:53
Inčkalni 19:40 22:12 19:06 21:35
Ruuna 09:49 10:39 09:32 10:29
Notes: *30 h/year limit value **8 h/year limit value
Regardless of the choice of the WTG model, the implementation of mitigation measures can ensure that the recommended limit values are met for all the alternatives considered. The impact of the flicker effect should not be considered as a decisive factor in the choice of an alternative, but should be seen in the context of other impacts and the performance of the planned wind farm.
4.3 Biodiversity – Plants and habitats
4.3.1 Legislative framework
Biodiversity protection is integrated into sectoral strategies and action plans and various reg- ulatory documents to ensure that biodiversity is protected. The regulatory framework de- scribed in this chapter covers flora and fauna, as well as habitats.
The EU has developed a biodiversity strategy (Biodiversity Strategy 203027) and also has legis- lation in place to ensure the preservation of biodiversity. The Natura 2000 network of pro- tected areas of EU importance, which also includes special area of conservation in Latvia, is a key part of EU nature and biodiversity policy.
European Union and international commitments
Convention on biological diversity, to which Latvia acceded by the act on the Rio Convention on Biological Diversity of 5 June 1992 (31 August 1995). The objectives of the Convention are preservation of biodiversity and the sustainable use of nature.
The Council of Europe’s Convention on the Conservation of European Wildlife and Natural Habitats (also known as the Bern Convention), approved in Latvia by the act on the Bern Con- vention (17 December 1996). The Convention aims to protect wild flora and fauna and their natural habitats, in particular those species and habitats whose conservation requires coop- eration between multiple countries, and to promote such cooperation. Particular attention is paid to threatened and endangered species, including threatened and endangered migratory species.
The Convention on the Conservation of Migratory Species of Wild Animals (also known as the Bonn Convention) adopted by the act on the Bern Convention, 1979 (11 March 1999)). The Convention identifies migratory species at risk, migratory species with an unfavourable con- servation status and the principles to be taken into account when implementing conservation measures for these species.
27 https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_lv
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
82
European Council Directive 2009/147/EC of 30 November 2009 on the conservation of wild birds (the Birds Directive). The Directive was adopted to maintain populations of migratory species at levels that meet specific ecological, scientific and cultural requirements, while tak- ing account of economic and recreational needs, or to regulate the size of populations of these species to levels that meet these requirements. Many wild bird species that occur naturally in Europe are declining, in some cases very rapidly, and this poses a serious threat to environ- mental protection, particularly as the biological balance is threatened.
European Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (the Habitats Directive). The Directive aims to contribute to the conservation of biodiversity by protecting natural habitats and flora and fauna. It requires Natura 2000 to create a Single European Ecological Network covering specially protected ar- eas. This network should ensure that natural habitat types and relevant species are main- tained or, where necessary, restored to a favourable conservation status within their natural range.
Latvian legislation for protection of the environment and nature
Act on the conservation of species and habitats (in force since 19 April 2000). The aforemen- tioned act regulates matters related to the protection of protected plants, fungi, lichens, ani- mal species, their habitats and biotopes. The objectives of the act are to ensure biodiversity by preserving the fauna, flora and biotopes characteristic of Latvia, to regulate the protection, management and monitoring of species and biotopes, to promote the conservation of popu- lations and biotopes in accordance with economic and social conditions, as well as cultural and historical traditions, to regulate the procedure for designating specially protected species and biotopes, and to ensure the necessary measures for the maintenance of populations. Ar- ticle 3.1 of the act sets out the requirements for habitats and species of EU significance and lists their features. The protection of natural habitats and species of EU significance in Latvia is ensured in accordance with legislation on nature conservation. The act sets out require- ments for the protection of species and habitats.
Cabinet regulation no. 213, on criteria to be used in assessing the significance of the effects of damage to specially protected species or specially protected habitats (in force from 31 March 2007), sets out the criteria to be used in assessing the significance of the effects of damage to special protected species or special protected habitats in comparison with the baseline condition. The rules require that significant adverse changes from the baseline are determined using numerical data for species and measurable data for habitats.
Cabinet regulation no. 1055, a list of species of animals and plants of significance at EU level that are in need of protection and the list of individual species of animals and plants harvesting of which in the wild may be subject to restricted use conditions (in force from 19 September 2009) establishes the list of species of significance at EU level that are in need of protection (cabinet regulation no. 1055, Annex 1) and the list of individual animal and plant species of EU significance harvesting of which in the wild may be subject to restricted conditions of use (cabinet regulation no. 1055, Annex 2). This list has been taken into account in the description of the natural assets in the area surrounding the proposed activity.
Cabinet regulation no. 153, a list of the EU priority species and habitats occurring in Latvia (in force from 25 February 2006) contains the list of EU priority species and habitats in Latvia.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
83
This list has been taken into account in the description of the natural assets in the area sur- rounding the proposed activity.
Cabinet regulation no. 350, a list of specially protected habitats (in force from 28 June 2017), defines the list of specially protected habitat types.
Cabinet regulation no. 396, a list of specially protected species and restricted use specially protected species (in force from 18 November 2000), lists the species of plants, animals and fungi that are especially protected and restricted for use in Latvia. The list has been taken into account in the description of the natural assets in the area surrounding the proposed activity.
Cabinet regulation no. 940, on the establishment and management of micro-reserves, their protection, and the establishment of micro-reserves and their buffer zones (in force from 1 January 2013), establishes the procedures for the establishment and management of micro- reserves, their protection, and the establishment of micro-reserves and their buffer zones. Annexes to the regulations:
1. specially protected species of mammals, amphibians, reptiles, invertebrates, vas- cular plants, mosses, algae, lichens and fungi for which micro-reserves can be es- tablished;
2. specially protected bird species for which micro-reserves may be established and the micro-reserve areas designated for them;
3. specially protected fish species for which micro-reserves can be created in their spawning grounds.
Act on special areas of conservation (in force since 7 April 1993). The act establishes the basic principles of the special areas of conservation system, the procedure for establishing and en- suring the existence of special areas of conservation, the procedure for managing special ar- eas of conservation, monitoring their status and keeping records, and connects national, in- ternational, regional and private interests in the establishment, conservation, maintenance and protection of special areas of conservation. Amendments adopted on 15 September 2005 approved the Annex to the act with the Latvian Natura 2000 list of special areas of conserva- tion of European significance where Natura 2000 sites are divided into three types: “A” – areas designated for the protection of specially protected bird species; “B” – areas designated for the protection of specially protected species other than birds and specially protected habitats; “C” – areas designated for the protection of specially protected species and specially pro- tected habitats. The amendment of 17 March 2022 revises the annex by defining the purpose of establishing Latvian Natura 2000 sites, with a special area of conservation of European sig- nificance for each site.
Cabinet regulation no. 264, on general regulations on the protection and use of special areas of conservation (in force from 31 March 2010), establishes the general procedure for the pro- tection and use of special areas of conservation, including the permitted and prohibited types of activities in the areas, as well as a special information sign template to be used in nature to mark the protected areas and the procedure for its use and establishment.
Cabinet regulation no. 511 of 7 July 2008, on the assessment of damage to natural monu- ments and calculation of the cost of remediation measures (in force from 12 July 2008), es- tablishes the damage assessment and remediation measures for natural monuments desig- nated by the cabinet of ministers as well as by municipalities.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
84
The survey area and the proposed activity site are situated in the Special Area of Conservation in the North Vidzeme Biosphere Reserve, its neutral zone.
The protection requirements of the biosphere reserve are determined by cabinet regulation no. 303 of 19 April 2011. Special regulations for the protection and use of the North Vidzeme Biosphere Reserve and the act on the North Vidzeme biosphere reserve, adopted by the Par- liament of Latvia on 11 December 1997. According to the special rules for the protection and use of the North Vidzeme biosphere reserve, the construction of wind turbines in the survey area is allowed without height limitation, subject to the following conditions: wind turbines may be installed upon a written permission from the nature conservation agency; wind tur- bines must be installed in groups not exceeding 20 wind turbines, minimising the distance between adjacent wind turbines. The distance between the groups must be at least two kilo- metres.
4.3.2 Impact assessment approach
Information on special area of conservation, micro-reserves, species and habitat sites on the proposed activity site and its vicinity was obtained from the public nature data management system OZOLS28, portal www.dabasdati.lv, unpublished materials from species assessments according to IUCN categories in the project LIFE for Species and other materials available to experts.
Field surveys have been carried out the proposed activity site (WTG locations and infrastruc- ture). The survey covered the planned access road construction sites within their potential construction width (8 m) and the planned technological sites for the construction of the WTGs in accordance with the sites shown in the cartographic material. It is assumed that various types of impact on protected forest habitats and protected vegetation species may occur up to 50 m around the proposed infrastructure route and development site (e.g. drainage impact or edge effects). During the survey, photographic evidence was collected and GPS equipment was used to record objects and information.
The survey area was surveyed by experts certified in species and habitat conservation:
1) Anete Pošiva-Bunkovska, certificate no. 116;
2) Toms Daniels Čakars, Certified Expert/Assistant Expert, Certificate no. 182;
3) Maija Fonteina-Kazeka, certified expert, certificate no. 233.
The expert opinion on the forest and heathland, swamps, grassland and vascular plant habitat groups in the area of the proposed development has been used for the preparation of this chapter.
Initially, a preliminary survey was performed to analyse cartographic information and infor- mation available in databases and assess the potential for identifying specially protected hab- itats and species. The survey used data from the NCA data management system OZOLS. The proposed activity site was inspected in the field on 27 July and 14 August 2023. In April 2024, the revised and new cable route layouts as well as the updated WTG L_16A and L_17A location
28 https://ozols.gov.lv/pub
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
85
alternatives were surveyed. The section of the cable route in the parish of Ipiķi will be further surveyed in June 2024.
The WTG, technological site and access road locations were revised during the assessment taking into account the initial survey results. To avoid or minimise impact on natural assets, the locations were changed where necessary. Consequently, during the EIA procedure, actions have already been taken to reduce the impact on specially protected species and habitats.
Information on special area of conservation, micro-reserves, species and habitat sites in the vicinity of the proposed activity site in Estonia was obtained from the EELIS database (Estonian Nature Information System).
4.3.3 Description of the current situation
Special protected nature assets on the proposed activity site in Latvia
The survey area is situated in the border zone between the Burtnieka Plain of the North Vi- dzeme Lowland and the Erģeme Hills of the Sakala Upland. The area around the proposed WTG wind farm is characterised by moraine sediments, with moraine hills, hillocks and kames. The depressions are wet, damp and boggy forests on peaty soils and swamps. Higher ground is agricultural land and dry woodland.
There are no lakes in the area, but there are several small rivers flowing southeastwards to- wards the river Rūja in the Salaca basin - Veserupīte, Krūmiņupīte, Silupīte, Raudava, Melderīšupīte, Pestava. There are many swamps in the surrounding area - Urgas, Bērzu, Lucas, Lobinu, Titas.
The territory is generally uninhabited, with occasional ruins of ancient dwellings visible. The soils are relatively fertile, so that the vegetation types of the dry forests are dominated by heath and pine-spruce, and the wet forests – Myrtilloso polytrichosa, Caricoso-phragmitosa and swamps. Forestry activity has been and continues to be quite intense in the forests. In the past, population density was higher and there was more open farmland. In many places there are abandoned house sites and secondary overgrown farmland, but part of the area has been forest for a long time, for example in the Ūskalns, Mežgaļi un Akmeņgravas forest ranges. As a result, forests also have structures and species typical of natural forest habitats.
Special areas of conservation, micro-reserves, protected trees
According to the information in the Natural Data Management System Ozols of the Nature Conservation Agency, the survey area and the planned activity site are situated in a special area of conservation (hereinafter referred to as SAC), i.e. North Vidzeme Biosphere Reserve, its neutral zone (see Figure 4.3.1). There are no micro-reserves established for the protection of habitats or plant species on the proposed activity site. The nearest micro-reserves have been established to protect bird species (see Chapter 4.4).
The North Vidzeme Biosphere Reserve covers a wide area in North Vidzeme, including Limbaži, Valmiera and Valka counties, including the proposed activity site. It covers an area of 475,514 hectares, of which 457,708 hectares is land and 17,806 hectares sea. The Biosphere Reserve was established in 1997. Its objective is to achieve a balance, nationally and internationally, between protecting natural diversity, promoting economic development and preserving cul- tural values. The Biosphere Reserve represents internationally recognised temperate forest ecosystems on land and along the Baltic Sea coast. To ensure the conservation of the
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
86
landscape, ecosystems, species and genetic diversity of the area and to promote sustainable economic development, the Biosphere Reserve is divided into functional zones (landscape protection area and neutral zone).
The neutral zone is the outer zone of the Biosphere Reserve where sustainable nature man- agement is ensured as a prerequisite for local development. It is designed to promote the balanced and sustainable development of the populated localities within the Biosphere Re- serve. The neutral zone includes all towns and villages within the Biosphere Reserve.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
87
Figure 4.3.1. Location of the proposed activities, special area of conservation and natural as- sets in the parish of Lode.
Legend
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by Jāņasēta SIA was used as a base. Data from the DDPS
OZOLS database (26 January 2024)
Wind turbine location
Initial wind turbine location
Planned cable route
Access road
Construction site
Substation
Survey area
Protected tree
North Vidzeme Biosphere Reserve areas with 30 m WTG height limit
North Vidzeme Biosphere Reserve areas without WTG height limit
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
88
Figure 4.3.2. Location of the proposed activity, special areas of conservation and natural as- sets in the parish of Ipiķi.
Legend
Planned cable route
Survey area
Protected tree
Micro-reserve
Micro-reserve buffer zone
North Vidzeme Biosphere Reserve areas with 30 m WTG height limit
North Vidzeme Biosphere Reserve areas without WTG height limit
National border
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by Jāņasēta SIA was used as a base. Data from the DDPS
OZOLS database (26 January 2024)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
89
Several potential ancient trees have been identified in the survey area and its vicinity, which meet the criteria of potential ancient trees defined by the Nature Conservation Agency (trees that have reached at least 90% of the size of an ancient tree according to the criteria of pro- tected trees defined in cabinet regulation no. 264 of 16 March 2010, on general regulations on the protection and use of special areas of conservation), and trees important for the con- servation of natural diversity. Two potential small-leaved linden ancient trees, Tilia cordata, identified during the survey are situated on the edge of the planned access road to WTG L_04. The already known potential Larix ancient trees (ID 33050 and 33051) are situated next to the road leading through Arakste.
Protected plant species and habitats
The survey area covered both the forest and swamp habitats of EU importance identified by the Natural Data Management System Ozols and new habitats of EU significance, if any were identified. Protected species of vascular plants, as well as rare and protected species of mosses, lichens, fungi and invertebrates associated with forest habitats are marked (see Fig- ure 4.3.3).
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
90
Figure 4.3.3. Habitats of EU significance and sites of rare and protected species in and around the proposed activity site in the parish of Lode
Legend
Wind turbine generator
Planned cable route
Access road
Possible transportation routes
Specially protected species locations
Natural asset
Protected tree
Orobanche pallidiflora (reticulata) spot
Protected habitat of EU significance
forest
swamp
grassland
national border
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS Bal-
tija by Jāņasēta SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
91
Figure 4.3.4. Habitats of EU significance and sites of rare and protected species in and around the proposed activity site in the parish of Ipiķi
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base.
Legend
Planned cable route
Substation
Specially protected species locations
Protected habitat of EU significance
forest
swamp
grassland
micro-reserve
micro-reserve buffer zone
national border
Natural asset
Nest found
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
92
In general, the area around the WTG sites and access roads is forested, some of it secondary forest on former agricultural land. So far, few localities of specially protected or rare plants, fungi, lichens and mosses have been recorded in the Natural Data Management System Ozols in the survey area (several Platanthera sp, Huperzia selago and Lycopodium annotinum sites have been noted).
The EU protected bog habitats are 7110 Active raised bogs, 7120 Degraded raised bogs where natural regeneration is possible or ongoing, and 7140 Transition mires.
The most common forest habitats in the wetland types are 9080* Swamp woods and 91D0* Bog woodland, probably because they are more difficult to harvest than dryland forests and the volume of wood available is lower. The most frequent habitats of EU significance in dryland forests are 9010* Old or natural boreal forest and 9050 Herb-rich spruce forests. No protected grassland habitats were found on the proposed wind farm site during the survey.
On the proposed activity site, as in all Latvian forest areas without sufficient protection status, habitats are most threatened by forestry activities – both in the habitat areas as such where clear-felling may result in habitat destruction and in adjacent areas where clear-felling and forestry infrastructure (road tracks, drainage ditches) create openings, increase ecosystem fragmentation and negatively affect stand microclimate, including through edge effects. Rec- lamation ditches can have a negative impact on forest habitats that require a high water table (e.g. 9080* Swamp woods), as well as all types of bog habitats.
The EU protected habitats present within the area of the planned WTG sites and access roads, as well as within the area of potential effects (up to 50 m from these sites), are shown in Ta- ble 4.3.1 and Figures 4.3.5 to 4.3.9.
Table 4.3.1. EU protected wetland and forest habitats in the area of potential impact of the planned WTG infrastructure (50 m)
Habitat code and name
Polygon number Location
7120 Degraded raised bogs still ca- pable of natural re- generation
17TK904_67 The habitat ground is situated in the northern part of the site, close to the planned WTG L_01 and L_02 sites and the access road.
LVM 2020 In the vicinity of WTG L_09 construction site.
9010*_3, Old or natural boreal for- est
24AP116_1, 24AP116_2
In the vicinity of WTG L_03 construction site.
9050 Herb-rich spruce forests
19SI05_17 On the edge of the planned cable route in the parish of Ipiķi.
91D0* Bog wood- land
24AP116_4 WTG L_19, where the proposed location affects part of the habitat
17TK904_70
23AP116_72
Near WTG L_01 location and access road
9080*_1 24AP116_3 The habitat ground is crossed by a cable route in the parish of Lode
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
93
The rare and protected species found in the area of the planned WTG sites and access roads, as well as in the area of potential impact (up to 50 m from these sites), are shown in Table 4.3.2 and Figures 4.3.5 to 4.3.9.
Table 4.3.2. Special-status species on the proposed activity site and in the area of its poten- tial effect
Name
Species group, con- servation category
Accessibility in the survey area
Common spotted orchid Dacty- lorhiza fuchsia
Flowering plant; SCC I, SG IV
L_15 location site and nearby
Northern firmoss Huperzia sel- ago
Fern, SCC II, SG IV
Near the L_01 access road
Common club moss Lycopodium annotinum
Fern, SCC II, SG IV
Near the L_01 access road, on the L_15 site, near the L_16 site area, in the cable route corridor in the parish of Ipiķi
Liverwort Odontoschisma denu- datum
Moss, SCC I, DMB IS
L_15 site
Broomrape Orobanche pallidi- flora (reticulata)
Flowering plant; SCC, MIK, SG II
Near WTG L_01 location and access road
Near the WTG L_03 access road
Lesser butterfly-orchid Platan- thera bifolia, wild orchid Platan- thera sp.
Flowering plant; SCC I, SG IV
Near the WTG L_01, L_03 site, on the L_15 site, on the L_16 access road route
Lesser butterfly-orchid Platan- thera chlorantha
Flowering plant; SCC I, SG IV
Cable route corridor in the parish of Ipiķi
SCC I, II – cabinet regulation no. 396, 14 November 2000. List of Specially Protected Species and Restricted Spe- cies, Annex I or II. SG - Latvian Red Book. The LSG uses the following categories of endangered species: I - endangered species; II - declining species; III - rare species; IV - little-known species. MIK – cabinet regulation no. 940, 18 December 2012. Establishment and Management of Micro-reserves, their Protection, and the Designation of Micro-reserves and their Buffer Zones
DMB IS - natural forest habitat specialist species, acc. to Aunins, A. (ed.) 2013. European Union protected habitats in Latvia. Detection Manual. 2nd updated edition. Latvian Fund for Nature, Ministry of Environmental Protection and Regional Development, Rīga. Pages 350–355
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
94
Figure 4.3.5. Sites of special protected species and protected habitats of EU significance near WTG L_01 and along the access road
Legend
Wind turbine generator
Planned cable route
Access road
Construction site
50 m zone around the planned in- frastructure location
Natural asset
Protected tree
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS Bal-
tija by Jāņasēta SIA was used as a base.
Specially protected species locations
Protected habitat of EU significance
forest
swamp
National border
Orobanche pallidiflora (reticulata) spot
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
95
Figure 4.3.6. EU protected habitats on WTG L_03 site
forest
swamp
National border
Protected habitat of EU sig- nificance
Specially protected species locations
Wind turbine generator
Planned cable route
Access road
Construction site 50 m zone around the planned in- frastructure location
Legend
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
96
Figure 4.3.7. EU protected habitats along the access road to WTG L_09 site
Wind turbine generator
Planned cable route
Access road
Construction site
50 m zone around the planned infrastructure location
Legend
Protected habitat of EU signifi- cance
forest
swamp
National border
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS Bal-
tija by Jāņasēta SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
97
Figure 4.3.8. Specially protected habitats of EU significance on WTG L_19 site and along the access road
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The digital map JS Bal-
tija by Jāņasēta SIA was used as a base.
Legend
Wind turbine generator
Planned cable route
Access road
Construction site
50 m zone around the planned in- frastructure location
Natural asset
Protected habitat of EU significance
Specially protected species locations
forest
swamp
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
98
Figure 4.3.9. Protected habitats of EU significance in the cable line from WTG L_06
In the planned cable route in the parish of Ipiķi, Sosnowsky’s hogweed Heracleum sosnowskii growths have been found along the border between the two countries and invasive common ninebark Physocarpus opulifolius growth have been found along the former railway embank- ment.
Legend
Wind turbine generator Planned cable route
Access road
Construction site 50 m zone around the planned infra- structure location
Protected habitat of EU significance
Specially protected species locations
forest
National border
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
99
Natural assets in Estonian territory
Three protected habitats of European importance, i.e. forests and grasslands, are situated in the vicinity of the proposed activity in Estonia. The closest is Veelikse Bog, which corresponds to biotope 9080* Swamp woods. Part of the swamp extends into Latvia, where it is called Lucas Swamp. Veelikse bog and habitat 9080* are situated approximately 700 m south of WTG L_06, approximately 700 m southwest of L_07, approximately 400 m southwest of L_08, ap- proximately 800 m west of L_09 and approximately 400 m west of L_10 (see Figure 4.3.10).
The cable route running between the parishes of Lode and Ipiķi is planned in the wetland area between the Penni Veelixe swamps. Beyond the V173 it continues through woodland.
Approximately 600 m north of the planned cable route on the banks of the river Ruukli, Euro- pean protected habitat 6430 Hydrophilous tall herb fringe communities is found, also Purgla Swam.
Approximately 2.5 km east of L_15 European protected habitat 6450 Alluvial meadows is sit- uated on the banks of the river Penuja.
One key habitat of pine and mixed pine forests is marked between Purgla swamp and road 24203 and is situated approximately 1.5 km north of the planned cable route.
No sites of specially protected or rare plants and no ancient trees have been identified in the vicinity of the proposed activity site in the territory of Estonia.
Figure 4.3.10. EU protected habitats in Estonia
Legend
Wind turbine generator
Planned cable route
Access road
Construction site
Substation
Survey area
Protected habitat of EU signifi- cance
Swamp
Forest
National border
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base. EELIS data are used ((Eesti looduse infosüsteem) 8 June 2024)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
100
4.3.4 Impact on special areas of conservation, trees, plants and habitats
Impact within Latvia
Although the proposed activity site is situated in the neutral zone of the North Vidzeme Bio- sphere Reserve, which has been designated in order to promote balanced and sustainable development of populated localities in the Biosphere Reserve without excluding the develop- ment of economic activities, no negative impact on this SPA is expected as a result of the proposed activity.
The construction of WTG L_01 would, if implemented as planned, have an unavoidable signif- icant adverse effect on the 0.5 ha habitat of broomrape Orobanche pallidiflora (O.reticulata ), resulting in its complete destruction.
Impact on protected habitats of EU significance due to changes in the hydrological regime caused by the proposed activity are considered to be insignificant at the regional and national scale, but significant at the local scale within the forest range:
- The construction of L_01 would result in negative impact on protected habitats: 7120 Degraded raised bogs still capable of natural regeneration 0.33 ha and 91D0* Bog woodland 1.37 ha;
- In case of construction of L_03, 0.44 ha of the habitat 9010* Old or natural boreal forest would be adversely affected. At the same time, it should be noted that the hab- itat is already at risk from forestry activities and may be felled regardless of the pro- posed activity;
- In the event of construction of L_19, 1 ha of the habitat 91D0* Bog woodland would be negatively affected.
For bog habitats, one of the main prerequisites for favourable conservation status is an ade- quate hydrological regime, i.e. the consistently high water table. The bog is characterised by permanent or prolonged wetness, specific vegetation and peat formation. Bogs form when rainfall exceeds evaporation. They are also encouraged by the topography and the distribution of poorly permeable, clayey sediments29. Potential threats to habitats 7110* (ground 17TK904_60, Urgas Swamp) and 7120 (ground 17TK904_67, Bērzu Swamp) are associated with the construction of WTG L_01 and WTG L_03 and the associated drainage of proposed adjacent areas.
Excavation and tree felling during the construction of the cable route in the parish of Lode between WTG L_06, and the Estonian border is expected to have a temporary negative effect on the habitat 9080*_1 Swamp Woods. In the long term, the creation of an up to 10 m wide clearance will have minor adverse impact on habitat 9080* Swamp Woods polygon 24AP116_3.
Overall, the proposed activity will have a negligible direct negative impact on protected habi- tats of EU significance and the potential impact from changes to the hydrological regime or
29 Priede, A. (ed.). 2017. Guidelines for the conservation of protected habitats in Latvia. Volume 4. Swamps, springs and fens. Nature Conservation Agency. Sigulda. p. 207.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
101
edge effects will be limited and not greater than those already caused by ongoing forestry activities and the restoration of the reclamation systems in the area.
Overall, it can be concluded that the proposed activity will not have an adverse effect on the protection status of protected habitats of EU significance at regional or national level.
The following special protected species have been identified in the area of direct impact of the proposed activity, which will be destroyed as a result of the proposed activity: stiff club- moss Lycopodium annotinum, wild orchids Platanthera sp, common spotted orchid Dacty- lorhiza fuchsii. The habitats of these species are typical for the area (wild orchids - non-specific habitats of fertile growing conditions in partial light conditions, spotted orchid - wet, moder- ately mineral-rich forests and adjacent slopes), so it is likely that the species occur not only in the surveyed area, but also in the wider area. It can be concluded that the proposed activity will not affect potential habitats of protected vascular plant species that would occur only in a small area and thus be threatened at a local scale.
Considering that a substantial part of the cable route is planned to run along the former rail- way embankment, on agricultural land and, in some sections, within the building lines of roads or road corridor without building lines, no additional adverse impact is expected from the construction of the cable routes planned as a part of the proposed activity, except where the location of the planned cable route crosses the habitats of specially protected species.
Impact on Estonian territory
Veelikse bog, which corresponds to biotope 9080* Swamp woods, is separated from the pro- posed WTG construction sites of and associated infrastructure by a strip of agricultural land. There will be no direct impact on the bog because of the distance from the proposed con- struction sites. Indirect effects that could result from changes in the hydrological regime of the bog are also not possible due to the separation of the construction sites from the bog by reclamation ditches and the low relief of the bog.
The European protected habitat 6430 Hydrophilous tall herb fringe communities, also marked as Purgla bog on the maps, is situated far from the proposed WTG construction sites and will not be affected. A cable route is planned relatively close by (600 m to the south). However, the cable route does not directly affect the habitat, but cannot indirectly affect the hydrolog- ical regime of the habitat, as the bog is in a low relief depression.
The European protected habitat 6450 alluvial meadows and the key woodland habitat, pine and mixed pine woodland, are sufficiently distant from the proposed development sites that the proposed development would not have a direct or indirect effect on them.
4.3.5 Precautions to mitigate impact
The implementation of the activity is not expected to have indirect negative impact on SPA or micro-reserves established for the protection of forest or wetland habitats. The implementa- tion of the proposed activity does not pose a threat to the special area of conservation pur- poses or the integrity of the protection areas, either locally or regionally.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
102
According to the approach defined in the guidelines for mitigation of impact of solar and wind energy projects30, the area of the proposed activity is assessed as an area of natural ecosys- tems with a medium high biodiversity value, and accordingly the activity should ensure that the existing level of natural values is maintained (no net loss). Measures to prevent the loss of habitats and habitat areas of protected species or to compensate for the destruction of indi- viduals or loss of habitats are recommended to mitigate and avoid the expected impact where the impact on the metapopulations of the species is significant.
Some of the potential impact of the wind farm has already been addressed by relocating the development site and access roads following an initial assessment of impact on species and habitats by experts.
The assessment of the areas affected by the proposed activity and the natural assets present there has identified impact that can be avoided through various measures and impact that cannot be avoided or would be significantly reduced if the proposed activity were carried out at its planned scale.
In order to minimise the impact of WTG L_01 on the broomrape Orobanche pallidiflora habi- tat, the design should be such so as not to disturb the identified site and preferably the em- bankment should be constructed without drainage ditches so as not to affect its hydrological regime. The use of black earth and sown grass is not recommended for reinforcing the edges of the development site, but locally sourced soil will allow the species to establish suitable growing conditions.
In the construction of the WTG L_03 site, technical solutions that are less draining on the sur- rounding areas are preferable in order to reduce the negative impact on the protected forest habitat 9010*. During the construction of this WTG, no machinery movements or other activ- ities must be allowed south of the drainage ditch situated along the planned access road in Block 708, Lot 4, to avoid impact on the broomrape site.
It is recommended to design the configuration of the access road, the construction site and the VES_04 construction site in such a way that potentially protected trees are not affected.
When planning access solutions to WTG L_08, it should be taken into account that any road widening which would affect the 9010* habitat is not permissible.
When planning access solutions to WTG L_16 and widening of the existing road at the junction with the new access road, it is recommended to choose solutions that would preserve the roadside oaks.
When designing the WTG L_19 location, the development site and the access road, it is rec- ommended to provide solutions that would allow creating embankments without excavating new ditches and draining the site.
Movement of machinery, placement of materials and other construction-related activities are also not allowed on the protected species sites indicated in the cartographic material of the report.
30 Bennun, L., van Bochove, J., Ng, C., Fletcher, C., Wilson, D., Phair, N., Carbone, G. Mitigating biodiversity im- pacts associated with solar and wind energy development. Guidelines for project developers. Gland, Switzer- land: IUCN and Cambridge, UK: The Biodiversity Consultancy, 2021.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
103
It is preferable to retain large fallen trees and trees; if fallen trees are situated in the road alignment, they should be placed adjacent to the forest stand, as should ecological trees as fallen trees or individual large trees outside forest land if they need to be felled for construc- tion purposes.
Large stones (> 4m3) in the area of the WTG construction sites and new access roads, together with lichens and mosses growing on them, should preferably be moved to a location where they will not be affected by the proposed activity, if possible maintaining the position of the stone in relation to the sky.
4.3.6 Assessment of alternatives
It should be emphasised that measures to avoid and minimise potential impact on nature val- ues have already been taken during the preparation of the EIA Report, by assessing the initial WTG and infrastructure locations and providing the planners with the information on the iden- tified natural assets, possible alternative locations for the WTG and associated infrastructure, as well as explaining the basic principles for planning the WTG location to avoid affecting nat- ural assets. In comparison with the original layout, the length of new access roads in this WTG wind farm configuration has been significantly reduced, the WTG locations have been planned as far away as possible from habitats that need to be undisturbed by the hydrological regime, and the number of planned WTGs has been reduced.
The assessment of the proposed activity examines both the technological alternatives, i.e. the different WTG models, and different alternatives for the WTG locations. Considering that all the technological alternatives under evaluation are considered to be similar in the context of factors that may affect the protection of habitats, plant species and conifers, there is currently no reason to define any of the assessed WTG models as superior to the others.
4.4 Biodiversity – bats
This chapter assesses the impact on bats in more detail. The relevant legislation is discussed in Chapter 4.3.1.
The opinion of Viesturs Vintulis, certificate no. 070 (valid until 30 September 2025), expert on the bat Chiroptera was used for this chapter. The expert opinion provides information on the potential impact of the proposed wind farm construction and operation on the populations of the bat species identified, as well as on the adjacent area and conditions, including recom- mendations for mitigation and future monitoring.
4.4.1 Impact assessment approach
The expert opinion has been drawn up in accordance with cabinet regulation no. 925 of 30 September 2010, on the content and minimum requirements for expert opinions in the field of species and habitat conservation, issued in accordance with the act on species and habitat conservation, article 4, paragraph 17, part 1, as well as the EUROBATS guidelines on compli- ance with bat conservation requirements in wind farm projects31 and the guidelines for
31 Rodrigues, L.; Bach, L.; Dubourg-Savage, M.-J.; Karapandza, B.;Kovac, D.; Kervyn, T.; Dekker, J.; Kepel, A.; Bach, P.; Collins, J.;Harbusch, C.; Park, K.; Micevski, B.; Minderman, J. Guidelines for Consideration of Bats in Wind Farm Projects - Revision 2014; EUROBATS Publication Serie; UNEP/EUROBATS: Bonn, 2015, p.133.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
104
assessing the impact of wind turbines on bats developed by the Latvian bat research society in 202232.
Initially, the available information on bat species found in and around the proposed activity was assessed. Historical information on bat roosts in and near the survey area is assessed to be incomplete, and the area was surveyed.
The area was surveyed seven times within a season in 2023 using a previously validated meth- odology in Latvia, on two nights in May, June, July, the first half of August (until 15 August), the second half of August (after 15 August), the first half of September (until 15 September) and the second half of September (after 15 September). The time of the surveys was chosen according to the biological cycle of bats (reproduction, migration and mating). In August and September, surveys were carried out more frequently to check whether there was increased bat activity related to migration in the survey area. The area was surveyed on two consecutive nights in each period: on the first night, the N1 route and automatic enumeration points 1–4 were surveyed, on the second night the N2 route and automatic enumeration points 5–8 were surveyed.
Route surveys were started one hour after sunset and included ultrasonic recording of bat calls at eight survey points with a total recording time of 90 minutes. 2nd and 3rd hour after sunset were chosen for the route records because these are usually the hours of the night when the most nocturnal bat activity is observed. Automatic recorders at stations 1–8 rec- orded throughout the night.
The acoustic (ultrasonic detector) method was used to record bat activity and was mainly fo- cused on the detection of so-called clade species. The orientation calls of clade species are adapted to hunting away from the trees or other obstacles in open space; they are relatively loud and have a strong constant or near-constant frequency component. Measurements of the constant frequency part in sound analysis software make it easier to identify these species. The clade species include species of the genera Nyctalus, Vespertilio and Pipistrellus. The open space bat species were significantly more likely to die in collisions with wind turbines than the other group, the woodland specialists (Rodriguez et al. 2015). The woodland group of bats consists of Myotis, Plecotus and Barbastella bats. These bats generally avoid flying in open spaces and hunt near trees and other structures, and their calls are quieter than those of open space species and do not have the constant-frequency component. Accurate identification of Myotis species from call records is usually impossible. For woodland species, deaths near wind turbines are less frequent, but have been recorded.
The objective limitations of this method must be taken into account when evaluating data obtained with ultrasonic detectors:
1. Ultrasound monitoring do not provide information on the number of bats at the mon- itoring site because it is not possible to determine whether the detector has detected multiple or repeated passes of the same bat. The results are therefore not the number of bats that have flown by, but the so-called activity index, i.e. the number of flights per unit time. It is generally assumed that there is a positive correlation between the
32 Latvian Bat Research Society. 2022. Guidelines for assessing the WTG impact on bats.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
105
number of bats and the number of overflights they record, i.e. more bats will result in more overflights33;
2. Bat species have different call volume and therefore the distance at which the detector picks up their calls also vary. Consequently, ‘loud’ species are overcounted and ‘quiet’ species undercounted in acoustic monitoring studies. In order to reduce the influence of different call volumes of different species on species activity indices, the following species perception coefficients were used to compare the frequency of occurrence of species:
- Nathusius’s pipistrelle Pipistrellus nathusii – 0.83; - Northern bat Eptesicus nilssonii and parti-coloured bat Vespertilio murinus –
0.5; - Common noctule Nyctalus noctula – 0.25.
For example, applying a species capture ratio reduces the activity ratio of the northern bat relative to the soprano pipistrelle by a factor of two and the activity ratio of the common noctule relative to the soprano pipistrelle by a factor of four. Species capture rates are used only for cross-species comparisons of activity in the area.
The choice of locations for the fixed monitoring spots was based on the planned location of the wind turbines and the behavioural characteristics of the bats. The selection of the habitat for the survey spots was based on the proportional distribution of the planned wind turbines in the habitats. In forest habitats, the so-called open space species, which are most frequently killed in collisions with wind turbines, usually hunt in various openings, i.e. above forest roads, in clearings and along forest edges, so the selected monitoring spots were chosen to be in the vicinity of these structures. In addition, routes were also recorded. The monitored routes were chosen to give an idea of the overall bat activity in and around the wind farm and were not linked to specific locations of the planned wind turbines.
The bat call recordings (sound files) made during the season in autumn and winter were checked using the sound analysis software BatSound 4.1.4. The quartile method was used to estimate bat activity. Using data from 14 sites in Latvia (including the site included in this sur- vey) that were monitored for bats in 2019–2021 using the same methodology and ultrasonic detectors of the same model, activity values for quartiles 1 and 3 were calculated. Activity below the 1st quartile was assessed as low, activity in the intermediate quartiles (2nd and 3rd quartile) as medium and activity above the 3rd quartile as high.
4.4.2 Description of the current situation
The planned wind farm site, and the adjacent areas are relatively unsuitable for bat habitats due to the scarcity of old forest growth and ongoing intensive felling.
Nine of the wind turbines will be installed in forest, nine on agricultural land close to the forest edge (up to 100 m from the forest) and one turbine on agricultural land more than 100 m from the forest edge. The planned wind farm is situated in the immediate vicinity of the Latvian- Estonian border. Currently, there are no other existing or planned wind farms in Latvia or Es- tonia that would be less than 2 km from to the potential Lode wind farm site, which would have a cumulative impact.
33 Barataud, 2015)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
106
Bat species observed
A total of 1054 bat call records were recorded during the season, identifying 1119 bat over- flights. From these records it was possible to determine which bat species are present in the potential wind farm area, as well as the frequency of occurrence of each species (relative to other species).
During the season, five bat species or genera were recorded in the survey area. The most abundant species was the northern bat Eptesicus nilssonii, with an occurrence rate (after ap- plying a capture rate) of 64%. The common noctule Nyctalus noctula was relatively rarely ob- served in the survey area with the estimated occurrence of 2%. The northern bat and the common noctules are members of the so-called open-space species group, which are partic- ularly sensitive to the effects of wind turbines.
The second most abundant bat group in the survey area is Myotis bats, with relative occur- rence of 32% in the survey area. In the Myotis group, there are a total of five possible species of the mouse-eared bat genus: pond bat Myotis dasycneme, Daubenton’s bat M. daubentonii, Brandt’s bat M. brandtii, the whiskered bat M. mystacinus, and Natterer’s bat M. nattereri. Distinguishing between different Myotis species by the calls they make is difficult and with current methodologies reliable identification to species is practically impossible. Current in- formation suggests that the impact of wind farms on Myotis bats is relatively low (Latvian Bat Research Society Guidelines for Assessing the Impact of Wind farms on Bats). In view of these factors, no in-depth analysis was done for bats of this genus.
Brown long-eared bat Plecotus auritus and parti-coloured bat Vespertilio murinus were also observed in the area during the season. Only a few overflights were recorded for these species during the season and the occurrence rate for either did not reach 1%. In addition, bats that could not be identified or could only be identified to a species group due to the quality of the recording.
Bat species observed in the potential wind farm area differ in their foraging and hibernation behaviour. Table 4.4.1 summarises the species observed in the survey area and their status in Latvia.
Table 4.4.1. Bat species found in Lode wind farm survey area in May–September 2023
Bat species in English
Scientific name of bat
Migratory or wintering spe-
cies Protection status
Assessment of the con- servation status of the
species in Latvia
Northern bat
Eptesicus nilssonii
Wintering SCC, EU IV, Berne Con- vention, Bonn Conven- tion, EUROBATS
Favourable
Common noctule
Nyctalus noctula
Migratory SCC, EU IV, Berne Con- vention, Bonn Conven- tion, EUROBATS
Unfavourable-Insuffi- cient
Parti-col- oured bat
Vespertilio murinus
Partly migra- tory, partly wintering
SCC, EU IV, Berne Con- vention, Bonn Conven- tion, EUROBATS
Favourable
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
107
Brown long- eared bat
Plecotus au- ritus
Wintering SCC, EU IV, Berne Con- vention, Bonn Conven- tion, EUROBATS
Unfavourable-Insuffi- cient
Mouse- eared bat genus
Myotis spp. All species win- tering
Acronyms: EU- European Council Directive 92/43/EEC (21 May 1992) on the conservation of natural habitats and of wild fauna and flora. Annex IV. Animal and plant species of Community interest in need of strict protection SCC – Species of conservation concern, Annexes 1 and 2 to cabinet regulation no. 396 of 14 November 2000, a list of specially protected species and specially protected restricted species Berne Convention – 16 September 1979 on the Conservation of European Wildlife and Natural Habitats CITES – 3 March 1979 Washington Convention on International Trade in Endangered Species of Wild Fauna and Flora Bonn Convention 23 June 1979 on the Conservation of Migratory Species of Wild Animals. Includes all bat species found in Latvia. EUROBATS - Agreement on the Conservation of Populations of European Bats (descending from the Bonn Convention). Latvia has been a member since 2003.
Bat night activity
Bat activity is not uniform throughout the night. Usually, the greatest bat activity occurs in the second and third hour after sunset. The activity of the most common bat species in the survey area (northern bat Eptesicus nilssonii and common noctule Nyctalus noctula) at specific times of the night can be seen in the graphs (see Figure 4.4.1).
Figure 4.4.1. Northern bat and common noctule activity at night in the survey area in 2023
Both species show higher activity in the second hour of the monitoring compared to the rest of the night. An exception is the northern bat Eptesicus nilssonii, which had a slightly higher number of flights in the fifth hour during the season. For most of the season, this species was most active in the first three hours after sunset. However, in July and the first half of August, there was a significant increase in activity in the fifth hour of the night.
A ve
ra ge
n u
m b
er o
f fl
ig h
ts p
er h
o u
r
A ve
ra ge
n u
m b
er o
f fl
ig h
ts p
er h
o u
r
Hour Hour
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
108
Myotis bats accounted for 32% of the bat recordings in the survey area in the 2023 season. Bats of this genus also peaked in the second hour after sunset (see Figure 4.4.2).
Figure 4.4.2. Myotis activity at night in the survey area in 2023
Bat activity at survey areas and habitats
The highest bat activity was observed in the first two night counting spots with an average of 6.2 passes per hour in spot 2 and 5.9 passes in spot 4. In all spots except spot 1, the dominant species observed was the northern bat Eptesicus nilssonii (see Figure 4.4.3).
Figure 4.4.3. Average bat activity in stationary monitoring spots in the survey area in 2023
Legend: Eptesicus nilssonii – northern bat, Pipistrellus nathusii – Nathusius’s pipistrelle, Nyctalus noc- tula – common noctule, Vespertilio murinus – parti-coloured bat, NYC/VESP/EPT – Nyctalus/Vesper- tilio/Eptesicu, Myotis spp – Myotis bats, NENOT – undetermined bat species, Plecotus auritus – long- eared bat.
Using the quartile method for bat activity, bat activity was rated as high in spots 2 and 4, medium in spot 3 and low in all other spots. Overall bat activity in all spots throughout the season averaged 0.24 flights per hour, which is considered low.
When analysing bat activity in specific habitats, the highest bat activity was observed in the forest edge (average 3.6 flights per hour). For the purposes of this assessment, woodland means an area within 100 m of a forest. All the forest edges were along cultivated farmland. 4 of the 8 recording spots were in this habitat.
Activity was more than four times lower in forest habitats where the average bat activity was 0.86 flights per hour. 3 of the 8 recording spots were in this habitat.
One monitoring spot (5) was in a clearing, which in the context of this assessment is consid- ered to be an area more than 100 m away from any other type of habitat structure. The aver- age number of overflights in that spot was 0.27 overflights per hour.
Hour
A ve
ra ge
n u
m b
er o
f fl
ig h
ts p
er h
o u
r
A ve
ra ge
n u
m b
er o
f fl
ig h
ts p
er h
o u
r
Spots
Bat activity in monitoring spots
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
109
The northern bat Eptesicus nilssonii was the dominant species in all recording spots (see Fig- ure 4.4.4). Using the quartile method to assess activity, bat activity is low in the open space and forest and high in the woodland habitats.
Figure 4.4.4. Bat activity in habitats in the survey area in 2023
Legend: Enil – northern bat Eptesicus nilssonii, Pnat – Nathusius’ pipistrelle Pipistrellus nathusii, Nnoc – common noctule Nyctalus noctula, Vmur – parti-coloured bat Vespertilio murinus, NYC /VESP/EPT – Nyctalus/Vespertilio/Eptesicu, MYO – Myotis. and NENOT – undetermined bat species, Paur – Long- eared bat Plecotus auritus.
Bat monitoring along the route is carried out to get an idea of the overall bat activity on the planned wind farm site and in adjacent areas. The average bat activity along the route is greater than the average bat activity in any of the monitoring spots. However, it should be noted that the route monitoring carried out at the time when bat activity is highest (2nd and 3rd hour after the sunset). The average activity in the monitoring spots in the second and third hour after the sunset was 10.2 overflights per hour, 9 overflights per hour on the N1 route and 2.3 overflights per hour on the N2 route.
Seasonal bat activity
The seasonal behaviour of bats varies throughout the year. Analysing bat activity in specific seasons gives an idea of the role of a particular area for local and migratory populations.
The northern bat Eptesicus nilssonii is the most abundant bat species in the survey area. The average activity of this species in the monitoring spots throughout the season was 1.63 flights per hour, which is considered to be moderately low in the Latvian context.
The species is most active in July and the first half of August, when their activity is considered high. Bat activity in May and the second half of September is considered to be medium. In other monitoring periods, it is considered low.
In May and June, local animals were most likely recorded with possible colonies either within or very close to the survey area. The slightly higher activity in May may be due to bats moving from their wintering sites to their summer roosts. In July, there is an increase in activity, most likely because of the fledglings. The activity in the first half of August and second half of Sep- tember could be due to partial migratory activity (the species is not migratory, but moves partly seasonally from summer to winter roosts, which can be tens of kilometres away), but also to more suitable feeding conditions in forests (high insect density) in the second half of summer and autumn, when nights become colder, especially in more open habitats. Such
Average bat activity in habitats
A ve
ra ge
n u
m b
er o
f fl
ig h
ts p
er h
o u
r
Open space Forest Forest edge
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
110
concentrations in certain locations may also increase the risk of collisions with wind turbines in the future.
The second most common bat species in the survey area is common noctule Nyctalus noctula. The average activity of this species on the wind farm site was 0.13 flights per hour. Compared to other areas in Latvia where bat counts have been carried out using the same method, this activity is considered low. Similar to the northern bat, there is increased activity in July and the first half of August. The increase in activity observed in July is most likely because of the fledglings. Common noctules leave Latvia in autumn for their wintering grounds in Central Europe. Again, the slight increase in activity in the first half of August could be due to the onset of migration and more suitable foraging conditions in the forest.
4.4.3 Impact on bat populations
Northern bat, the most common species in the survey area, is one of the species at highest risk from wind turbines. According to EUROBATS statistics on bat fatalities in wind farms across Europe in 2003–2014, the northern bat is the most frequent victim of wind turbines in Scan- dinavian countries. In Latvia, Nathusius’ pipistrelle ranks first among registered victims of wind turbines, and the northern bat is second. Night bats are generally not considered a high-risk species, as they usually fly and hunt close to landscape structures and are relatively rarely seen at higher altitudes. The impact of wind turbines on these species is therefore considered low. The highest mortality of bats by wind turbines occurs during the autumn migration, when all species, both migratory and wintering, move to their wintering sites.
The recorded species activity in the survey area is lower than in other areas surveyed using identical methodology, most likely due to forest habitat degradation and deliberate site selec- tion with few buildings as suitable roosting sites for bats. Potential spontaneous concentra- tions of bats at feeding sites may increase the otherwise low risk of collisions with the planned rotors.
The highest risk of bat mortality in the proposed wind farm is in July to September, i.e. during bat dispersal and migration. Bat activity is low in the first half of summer.
The greatest risk of bats dying by turbines is in the 2nd to 6th hour after the sunset.
Potentially higher risk of collision or damage for the bats is by the WTG to be installed close to the forest and other tree structures, and a lower risk of mortality at WTGs planned to be installed in the open field.
The current data in the survey area does not allow identifying specific WTGs or areas where the potential risk of bat mortality would be so high as to prohibit construction, but at least some bat mortality near rotors is possible, especially during migration.
A number of research publications34,35 suggest that bat activity in wind farms may increase significantly after turbines are built and that bats may appear in large numbers in places where they were not detected during the main survey, including in theoretically unsuitable or poorly
34 Solick D, Pham D, Nasman K, Bay K (2020) Bat activity rates do not predict bat fatality rates at wind energy facilities. Acta Chiropterologica 22: 135–146. 35 Solick D, Pham D, Nasman K, Bay K (2020) Bat activity rates do not predict bat fatality rates at wind energy facilities. Acta Chiropterologica 22: 135–146.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
111
suited landscapes for habitats. Bats are strongly attracted to wind turbines, although the rea- sons for this have not yet been established36. Therefore, monitoring is mandatory for at least two years after the installation of the turbines and launch of the wind farm.
4.4.4 Mitigation measures
The wind farm construction in the survey area is permissible provided that turbines that would be installed within 200 m of the nearest tree stand or water body are restricted. More exten- sive restrictions are not necessary initially, as the area has seen very low bat activity.
The operation restrictions should be ensured by the automatic shutdown or wind turbine off- time from 1 June to 30 September from sunset to sunrise if the following conditions are met:
- the wind speed at the top of the tower (nacelle) is 5 m/s or less;
- air temperature is higher than +6 ºC (Usually the temperature limit is +10 ºC, but observations in different areas of northern Latvia show that bat activity remains relatively high even when air temperature is within +6 ºC to +10 ºC, especially in autumn from late August to late September);
- rainfall does not exceed 1 mm per hour.
Depending on the results of the monitoring, which may or may not confirm increased bat activity and/or mortality by the installed turbines, the restrictions on wind turbine operation after the first and second years of post-construction monitoring could be removed altogether, relaxed or strengthened, specifically: the period during which turbine operation restrictions are required could be extended or reduced or the wind speed threshold at which turbine op- eration is allowed could be changed.
4.4.5 Assessment of alternatives
As part of the Environmental Impact Assessment, the options for the WTG locations were as- sessed and optimised taking into account the recommendations of the bat expert. The config- uration of the WTG park has also been assessed to minimise impact on bats. At the same time, mitigation measures were recommended for the reduction of the potential negative impact of the WTGs on bat populations.
The technical alternatives assessed in the EIA, i.e. Vestas V162-6.2, Vestas V172-7.2, Nordex N163-5.7 and Siemens Gamesa SG6.6-170, comparing them in the context of their impact on bats. These technical alternatives are assessed as equivalent because the mast height is be- tween 164 and 166 m, the rotor diameter ranges from 162 to 172 m, which means that the blade stands between 80 and 85 m above the ground. To minimise the impact on bat popula- tions, a WTG model with rotor blades as high above the ground as possible should be pre- ferred, with the Vestas V162-6.2 providing the greatest distance of 85 m. However, other mod- els are also acceptable and the recommended options reduce the impact on bat populations and it is not possible to draw firm conclusions on the advantages or disadvantages of any technological alternative in the context of bat conservation.
36 Rodrigues, L.; Bach, L.; Dubourg-Savage, M.-J.; Karapandza, B.;Kovac, D.; Kervyn, T.; Dekker, J.; Kepel, A.; Bach, P.; Collins, J.;Harbusch, C.; Park, K.; Micevski, B.; Minderman, J. Guidelines for Consideration of Bats in Wind Farm Projects - Revision 2014; EUROBATS Publication Serie; UNEP/EUROBATS: Bonn, 2015, p.133.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
112
4.5 Biodiversity – ornithofauna
This chapter assesses the impact of the proposed wind farm on the ornithofauna. The relevant legislation is discussed in Chapter 4.3. For this chapter, the opinion of ornithologist Andris Dekants (expert certificate no. 183, valid until 10 July 2026) on the impact of the planned wind farm on bird fauna was used.
4.5.1 Impact assessment approach
In order to assess the impact of the proposed activity on the ornithofauna, accumulated data were analysed and the area was surveyed to identify the current situation. The purpose and objectives of the survey were based on the conditions identified in the initial data analysis.
The survey of the wind farm and adjacent areas, including field studies, began in spring 2023 and continued in spring 2024. The analysis used several survey methods to identify, as far as possible, all specially protected and micro-reserve bird species that inhabit and inhabit or breed in the survey area.
Additional surveys for lesser spotted eagles and inventories of adjacent forest areas were also carried out in Estonia, approximately 3 km away from the planned WTG.
At the time of writing the report, all species listed in the first Annex to Directive 2009/147/EEC of the European Parliament and of the Council on the conservation of wild birds were also assessed. Other bird species were also recorded, including migratory birds.
The survey included:
- Multiple walks and inventories of the site in different months;
- Site-wide search for large nests of those SP birds of prey for which the site has been established as the nesting place. The large nests found were described, mapped and photographed;
- Surveys from different spots in the area to detect diurnal birds of prey assess their migration and routes;
- Night monitoring from different spots to estimate night migration;
- Use of the habitat suitability map developed in the Owl and Woodpecker Conservation Plan;
- The survey methodology used for owl monitoring was that recommended in the Owl Conservation Plan (hereafter referred to as the Owl Plan)37, and for the woodpecker counts was that recommended in the Woodpecker Conservation Plan (hereafter re- ferred to as the Woodpecker Plan)38. In order to protect these bird groups, owl and woodpecker monitoring has been carried out in priority areas within or in close prox- imity to the planned WTG sites;
- checking the information on sightings since 1 January 2013 on the Dabasdati.lv portal;
- geospatial processing of collected bird data and habitats.
Overall, the amount of fieldwork carried out is sufficient to analyse and make data-based de- cisions on the WTG locations and the impact on bird populations in and around the planned Lode wind farm.
37 https://www.daba.gov.lv/lv/sugu-un-biotopu-aizsardzibas-plani 38 https://www.daba.gov.lv/lv/sugu-un-biotopu-aizsardzibas-plani
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
113
4.5.2 Description of the current situation
The survey area is situated in the neutral zone of the North Vidzeme Biosphere Reserve. There are no micro-reserves, nature reserves or Natura 2000 sites in the Latvian part of the survey area. The nearest micro-reserve (ID=185288) established for bird protection is approximately 4 km from the nearest land unit of the proposed wind farm towards Ipiķi.
The new cable line to connect the wind farm to the substation will run along the micro-reserve ML 3099, turning west by it and crossing the buffer zone of the micro-reserve. The position of the cable route in relation to the micro-reserve is shown in Figure 3.1.
On the Estonian side, several protection areas have been established to protect the lesser spotted eagle. Two of them, KLO3001938 and KLO3002473, are situated 300–850 m from the Latvian border to the west of the survey area. Another site KLO3001586 is situated approxi- mately 1300 m from the border in the northern part of the survey area. See Figure 4.5.1 for the location.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
114
Figure 4.5.1. Micro-reserves in the vicinity of the proposed activity site
Wind turbine location
Planned cable route
Access road
Construction site
Substation Lesser spotted eagle conser- vation areas
National border
Legend
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by
Jāņasēta SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
115
31 species of specially protected and micro-reserve birds have been established in the survey area. All SPA bird species sighing spots are shown in Figure 4.5.2 .
Figure 4.5.2. Sightings of specially protected and micro-reserve bird species in the survey area
The summary and assessment of the specially protected, threatened and potentially most af- fected species found in and around the survey area is provided below.
Western capercaillie Tetrao urogallus is a sedentary species which needs a specific habitat. It stays in its territory all year round. Latvian northern border area is important for the caper- caillie and the Estonian and Latvian capercaillie populations exchange.
No pine forests with outstanding or highly suitable habitat for the species have been identified in the survey area. There are no micro-reserves or known nesting sites for capercaillie in the immediate area. Neither are there previously known sightings of capercaillie in the survey area. No sightings of the species were made during the inventory, but its presence was de- tected. It is most likely that the bird in question came from Estonia and is feeding in its diurnal territory on the site (20 ha of forest land) or it is a young bird which is not yet fully part of the breeding season. No mating site has been identified, but the most suitable breeding site is in the southern part of Veelikse Swamp (Lucas Swamp in Latvia) in Estonia where there is a wider tree belt (100–300 m) at the edge of the swamp and where no more than 2 to 3 roosters could be present (see Figure 4.5.3).
Legend
Latvian Geospatial Information Agency Topographic map 1 50 000
MLS observations – nesting
SCC observations – nesting
MLS, SCC – non-nesting
Planned WTG
Existing roads
Survey area
Border of Latvia
Lesser spotted eagle conservation areas
Micro-reserve buffer zone
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
116
Figure 3.5.4. Capercaillie sightings, buffer zones and shaded area where WTG installation should be avoided
Black grouse Lyrurus tetrix is a sedentary bird and stays all year round on the planned wind farm site and its surroundings where it has long-term suitable habitats. During its nesting sea- son, the black grouse is regularly found in the northern part of the site near all agricultural land plots near the swamp. Most of the time one bird was sighted, but the highest number of males observed at the same time was four (in the northern part of the site between Urgas and Bērzu Swamps). A group of 18 birds was sighted in the post-breeding period (see Fig- ure 4.5.4). WTG L_02 and L_05 are situated approximately 500 m from a roost with four roost- ers, L_01, L_07 and L_12 are situated approximately 400 m from a roost with one roosting bird, possibly a satellite roost.
Legend
Capercaillie sightings
Feasible capercaillie mating site
Mating buffer zone 1000 m
Mating buffer zone 1500 m
Shaded area
Planned WTGs
Existing roads
Survey area
Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
117
Figure 4.5.4. Black grouse spottings and numbers in the survey area
The woods on the planned activity site are an important habitat for hazel grouse Bonasa bonasia. Hazel grouse is found throughout the area of the planned wind farm in at least 14 habitats (see Figure 4.5.5). At least five WTGs (L_02, L_03, L_11, L_12, L_15) are planned within 200 m of the nearest known hazel grouse habitat and another 12 planned WTGs are within 500 m (L_01, L_04, L_05, L_06, L_08, L_09, L_10, L_13, L_14, L_18, L_19).
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
118
Figure 4.5.5. Hazel grouse spottings in the survey area
Grey partridge Perdix perdix is a sedentary species that lives in open farmland all year round. One songbird was spotted in the survey area in farmland between larger forest areas near WTG L_12 and L_14, as well as around Arakste.
Black stork Ciconia nigra is a long-distance migratory bird that mainly inhabits old and larger forests with watercourses and water bodies for breeding in Latvia. The nearest known black stork nest is in Estonia, approximately 12 km from the nearest planned WTG L_01.
One black stork was spotted in the survey area in spring 2023. It circled over the site and flew in the direction of Estonia (see Figure 4.5.7). It is believed to have been a passing bird. No black stork foraging or nesting sites have been recorded in the vicinity of the observation. From April to September, black storks can appear passing through or feeding in the wind farm, for example in the river Krūmiņupīte near Arakste or in the eastern part of the site along the Veserupīte river. The river Krūmiņupīte near the planned WTG L_17 is a promising black stork feeding site (see Figure 4.5.5), but closer to WTG L_10 it becomes a small stream and is un- likely to be a potential black stork feeding site.
Legend
Hazel grouse sightings – nesting
Hazel grouse sightings – non-nesting
Planned WTGs
Existing roads
Survey area
Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
119
Figure 4.5.6. Krūmiņupīte near WTG L_17
Figure 4.5.7. Black stork records in the study area and recommended protection zone along
Krūmiņupīte
In the expert’s opinion, a protection zone of approximately 1 km wide (500 m on either side from the middle of the river) should be maintained along Krūmiņupīte, which is a potentially suitable feeding area for the black stork (see Figure 4.5.7).
The white stork Ciconia ciconia is a migratory bird that in Latvia usually chooses nesting sites near human habitation. At least six occupied nests were recorded in the south of the study area and a further nine nests in the surrounding area (see Figure 4.5.8).
Figure 4.5.8. White stork nests and records in the study area
Legend
Records of black storks
Planned wind turbine generators (WTGs) Watercourses
River protection zone (500 m)
Existing roads
Survey area
Border of Latvia
Topographic map by the Latvian Geo- spatial Information Agency 1:50,000
Legend
White stork – nesters White stork – non-nesters
Planned wind turbine generators (WTGs)
White stork nest protection zone 1 km
Existing roads
Survey area Border of Latvia
Topographic map by the Latvian Geospatial Infor- mation Agency 1:50,000
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
120
The pygmy owl Glaucidium passerinum is a sedentary inhabitant of old mixed forests and coniferous forests. In the opinion of the expert, the forests in the study area are considered suitable for nesting, passage and wintering: resting, feeding and nesting.
The pygmy owl has been recorded in at least four or five locations of the study area, mostly in its northern part, both within and close to the priority protected area.
According to the habitat suitability model of the species conservation plan, the suitability of the species in the cells of the planned WTGs ranges from 1.9% to 67.8%, with an average value among all planned generators of 34.4%. WTG L_18 is located in the pygmy owl priority pro- tected area, and WTG L_11 is located approximately 10 m from this priority area, where suc- cessful nesting of the pygmy owl has been recorded, observing juveniles. The detected juve- niles and currently suitable habitat are located approximately 550 to 850 m from WTGs L_18 and L_11. The location of the other planned generators is outside the priority protection areas defined in the Species Conservation Plan (see Figure 4.5.9).
Figure 4.5.9. Observations of pygmy owl, suitability model and priority areas for conserva- tion
The Tengmalm’s owl Aegolius funereus inhabits larger old mixed and coniferous forests. The proposed activity area is partly suitable for the Tengmalm’s owl. The inventory of the Tengmalm’s owl did not reveal this species in the area of the proposed wind power plants. According to the habitat suitability model for the Tengmalm’s owl developed under the Owl Conservation Plan, the suitability of the planned WTG cells ranges from 3 to 35%. The highest suitability is in the vicinity of WTGs L_07 and L_08, where it reaches 47% and 54% respectively. The study area is located outside the priority conservation areas identified in the species con- servation plan (see Figure 4.5.10).
Legend
Records of the pygmy owl (nesters)
Priority sites for protection (pygmy owl)
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Pygmy owl model (suitability)
High
Low
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
121
Figure 4.5.10. Site suitability model for the Tengmalm’s owl
The Ural owl Strix uralensis is a sedentary bird that inhabits mostly large, continuous forest stands. The Ural owl was recorded at four sites in the study area (see Figure 4.5.11). Two rec- ords of the pygmy owl in Priority Conservation Areas and one at a distance of 150 m from these.
According to the species conservation plan model, the species suitability in the cells of the planned WTGs ranges from 1.7 to 36.2%, with an average value among all planned plants of 18.9%. The proposed WTGs are located outside the priority conservation areas identified in the Ural owl conservation plan and there are no such areas in the immediate vicinity. The Ural owl was detected approximately 330 m from WTG L_04, 430 m from L_11, 650 m from L_13, 320 m from L_18, 630 m from L_14, 360 m from L_15.
Legend
High
Low
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Tengmalm’s owl model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
122
Figure 4.5.11. Ural owl records and site suitability model
The Eurasian eagle-owl Bubo bubo is a sedentary bird and the largest eagle-owl, inhabiting a variety of biotopes, including woodlands. According to the species conservation plan, there are no priority areas for the conservation of the eagle-owl in the area of the proposed wind power plants and the surrounding area. The species suitability in the planned WTG cells ranges from 1.7 to 19.2%, with an average value among all planned plants of 5.4% (see Figure 4.5.12). Historical data and site inventories have not revealed the presence of the eagle-owl in the study area and its surroundings.
Figure 4.5.12. Site suitability model for the Eurasian eagle-owl
Legend
Legend
High
Low
High
Low
Records of the Ural owl (nesters)
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Ural owl model (suitability)
Eurasian eagle-owl model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
123
The Eurasian three-toed woodpecker Picoides tridactylus is a sedentary species, mainly in- habiting coniferous and mixed forests, as well as alder thickets. The following potentially suit- able habitats have been identified in some locations in the study area. According to the Wood- pecker Conservation Plan, the species suitability in the planned WTG cells ranges from 0.1 to 56.5%, with an average of 15.7% across the 20 planned generators. There are no priority pro- tection areas for the three-toed woodpecker within and adjacent to the proposed wind power plant (Figure 4.5.13). During the breeding season, the three-toed woodpecker was recorded at three sites. The approximate distances from the observations to the nearest planned WTG are 190 m (L_04), 375 m (L_05) and 550 m (L_06).
Figure 4.5.13. Records, suitability model and priority conservation areas for the three-toed woodpecker
The white-backed woodpecker Dendrocopos leucotos inhabits old deciduous and mixed for- ests, including open landscapes. It is more common in eastern and northern Latvia. According to the species conservation plan, the species suitability in the cells of the planned WTG ranges from 1.8 to 32.4%, with an average value among all planned plants of 12.6%. Although the currently planned WTG are located outside the priority conservation areas identified in the species conservation plan, there are several such areas in the study territory (especially at the northern end), and the WTG are planned close to them. The nearest priority conservation area (with a pixel value of 63.2%) is approximately 10 m from the proposed WTG L_01, but the bird was not detected in this area during the survey year. Another protection area (with a pixel value of 75.1%, which also contains a white-backed woodpecker nest) is located approxi- mately 130 m from the currently planned WTG L_02 and 290 m from WTG L_04. WTG L_03 is located approximately 10 m away from the priority conservation area with a pixel value of 56.4%, where the nesting white-backed woodpecker has been recorded. In total, four to six potentially suitable habitats have been identified in the area (see Figure 4.5.14).
Legend
High
Low
Records of the three-toed woodpecker
Priority sites for the three-toed woodpecker
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Three-toed woodpecker model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
124
Figure 4.5.14. Records of the white-backed woodpecker, suitability model and priority con- servation areas
During the breeding season, the white-backed woodpecker was also recorded 120 m from WTG L_08, 520 m from L_09, 320 m from L_11, 250 m from L_13 and 660 m from L_19. At this time, the white-backed woodpecker is likely to use an area of more than 2 km2, which means that it may be present in the vicinity of all the planned WTG. Overall, the study area is charac- terised as an important breeding, resting and feeding site for the white-backed woodpecker throughout the year.
The middle spotted woodpecker Dendrocoptes medius is a sedentary species that lives mainly in broadleaved and mixed oak forests. No habitats suitable for this species have been identified in the vicinity of the proposed WTG. There are no priority areas identified in the species conservation plan in the vicinity of the proposed WTG. The nearest such area is more than 1500 m from the proposed WTG (Figure 4.5.15). The nearest record of the middle spotted woodpecker is approximately 800 m from L_16 and L_15.
Legend
High
Low
Records of the white-backed woodpecker
Priority sites for the white-backed woodpecker
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia White-backed woodpecker model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
125
Figure 4.5.15. Records of the middle spotted woodpecker, site suitability model and priority conservation areas
The black woodpecker Dryocopus martius is a forest-dwelling species. It is a sedentary spe- cies, with extensive breeding territories. It is the most common protected species found in the study area and is evenly distributed throughout the entire territory of the planned wind power plants. During the breeding season, it has been detected in at least 10 to 14 locations, of which about 10 are in the immediate vicinity of the WTG. In the long term, the species is expected to continue to be present throughout the wind farm. According to the species conservation plan model, the species suitability in the cells of the planned WTG ranges from 8.3 to 63.3%, with an average value among all planned plants of 37.3% (see Figure 4.5.16).
Figure 4.5.16. Records of the black woodpecker and the site suitability model
Legend
Legend
High
Low
High
Low
Records of the middle spotted woodpecker
Middle spotted woodpecker (non-nesting)
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Priority sites for the middle spotted wood- pecker
Records of the black woodpecker (nesters)
Black woodpecker (non-nesters)
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Middle spotted woodpecker model (suitability)
Black stork model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
126
The grey-headed woodpecker Picus canus is mainly found in mosaic landscapes, but avoids larger woodlands. According to the species conservation plan model, the suitability of the grey-headed woodpecker in the planned WTG cells ranges from 3.6 to 64.1%, with an average value among all planned generators of 30.2% (see Figure 4.5.17).
The grey-headed woodpecker has been recorded as a breeder at three sites - WTG L_06, L_08 and L_13. WTG L_08 and L_13 are part of the same site, so there could be a total of two nesting sites in the planned wind farm. Outside the breeding season, this species can be found throughout the entire area of the proposed wind farm.
Figure 4.5.17. Records of the grey-headed woodpecker and the site suitability model
The wryneck Jynx torquilla is a long-distance migrant bird that inhabits open landscapes and woodlands near grasslands. The wryneck was recorded in the central part of the planned wind farm in two places where it is likely to nest. The nearest planned WTG L_13 is approximately 200 m away from the wryneck nesting site. The second record is at the Inčkalni houses, which is approximately 890 m from WTG L_16 (see Figure 4.5.18).
Figure 4.5.18. Records of the wryneck in the proposed activity area
Legend
Legend
High
Low
Records of the grey-headed woodpecker (nesters)
Grey-headed woodpecker (non-nesters)
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Records of the wryneck Planned wind turbine genera- tors (WTGs) Existing roads
Survey area
Border of Latvia Topographic map by the Latvian Geo- spatial Information Agency 1:50,000
Grey-headed woodpecker model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
127
The lesser spotted eagle Clanga pomarina is a long-distance migrant bird that returns to Lat- via from its wintering grounds in early April. According to the Lesser Spotted Eagle Conserva- tion Plan in Latvia, the bird feeds mainly on land used extensively for agriculture, mostly mead- ows and pastures (64%), but also on fallow land (22%) and less frequently on arable land with sown crops (9%). Mown meadows and harvested crops, where food items are readily availa- ble, are particularly suitable. In Latvia, 90% of the nests are located within 400 m of the forest edge, close to grasslands.
Five occupied nests of the lesser spotted eagle and associated feeding areas have been iden- tified in the vicinity of the proposed wind farm (see Figure 4.5.19).
The distances from the occupied nests of the lesser spotted eagle between WTG L_17 and L_19 to the WTG are: L_17 - 450 m, L_19 - 810 m, L_16 - 1300 m, L_10 - 1710 m, L_09 - 2360 m, L_15 - 2610 m, L_14 - 2655 m and L_08 - 2760 m. The nests of the lesser spotted eagle (ID 680341820) found in Estonia are located 1200 m from WTG L_06, 2145 m from L_07, 2490 m from L_03, 2680 m from L_08 and 2700 m from L_05.
The nests of the lesser spotted eagle (ID 1115379091) found in Estonia are located 1850 m from WTG L_01, 2450 m from L_03 and 2670 m from L_02.
Figure 4.5.19. Records of the lesser spotted eagle, habitat suitability and large nests found
Legend
High
Low
Records of the lesser spotted eagle
Large nests of other species
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Priority feeding areas
Potential feeding areas
Lesser spotted eagle nest protection zone 2.8 km
Lesser spotted eagle conservation areas
Micro-reserve buffer zone
Lesser spotted eagle model (suitability)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
128
The European honey buzzard Pernis apivorus is a long-distance migratory bird that inhabits various types of forests in Latvia. During the survey one nest was found in the lesser spotted eagle conservation area in Estonia (ID 680341820). The distance from the nest to WTG L_06 is approximately 740 m, L_07 approximately 1730 m and L_03 approximately 1970 m. The planned area of the wind farm, especially its periphery, is characterised as well populated and well suited for the long term, with the honey buzzard residing from approximately the second decade of May to mid-September.
Feeding flights for the honey buzzard are mostly low, but mating flights and territory guarding are at rotor height, so the WTG should be built as far away as possible from all known honey buzzard nests.
Figure 4.5.20. Records of the honey buzzard and nests in the study area
The common buzzard Buteo buteo is a diverse forest-dweller and is not currently listed as a specially protected species. Currently only their large nests are protected39. However, the com- mon buzzard can be found all year round in Latvia and is the most common bird of prey in the country. The common buzzard is also the most commonly recorded diurnal bird of prey spe- cies in the study area. The whole site is characterised as an important breeding, resting and feeding area for the common buzzard, where it can be found throughout the year, especially during the breeding season.
39 cabinet regulation no. 935, paragraph 54.2, on the felling of trees in forests
Legend
Records of the honey buzzard (nesters) Honey buzzard nest Protection zone of the honey buzzard nest – 1 km Protection zone of the honey buzzard nest – 2 km Planned WTG
Existing roads Survey area Border of Latvia
Topographic map by the Latvian Geospatial Information Agency 1: 50,000
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
129
At least five occupied common buzzard nests have been recorded in the study area (see Figure 5.4.21), and another nest is likely to be located near WTG L_06, where the bird is regularly observed during the season.
Figure 4.5.21. Observations and nests of the common buzzard in the study area of the Lode wind farm
The Eurasian goshawk Accipiter gentilis is a forest-dwelling, sedentary species. During the survey, one goshawk was observed twice in the area between WTG L_05, L_07 and L_18 (see Figure 4.5.22). Although no nest or reoccurrence of the species was detected during the search of the surrounding forests, it is possible that the goshawk nests in the periphery of the site. The goshawk can be found in the area throughout the year, and the surrounding forests are suitable for nesting, increasing the risk of impacts and collisions throughout the lifetime of the wind park.
Legend
Topographic map by the Latvian Geospa- tial Information Agency 1: 50,000
Records of the common buzzard
Common buzzard nest
Unoccupied large nest
Large nest protection zone 1 km
Planned wind turbine generators (WTGs)
Existing roads
Study area
Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
130
Figure 4.5.22. Observations of the goshawk in and around the study area
The white-tailed eagle Haliaeetus albicilla inhabits forests, which are usually close to water bodies, and stays in Latvia throughout the year. Juveniles tend to wander long distances, while adults mostly stay close to the breeding area. The nearest known territory of the white-tailed eagle is in Estonia, approximately 8 km north of WTG L_01 at Kariste lake. During the survey, the white-tailed eagle was detected twice: in spring and autumn. Both times, the bird flying over the area was immature and had not reached breeding age. These observations were made between WTG L_11, L_12 and L_14. The risk of collisions is assessed as being low.
The western marsh harrier Circus aeruginosus is a long-distance migratory bird that returns to Latvia in late March and early April. Breeding in Latvia is usually associated with water bod- ies, but they often fly to agricultural landscapes in search of food. During the survey, three records were made on agricultural land at WTG L_05, between L_07 and L_08, and at Arakste. Several records were also made in the periphery (see Figure 4.5.23), but these were all asso- ciated with low feeding flight and the western marsh harrier is not thought to nest in the vicinity of any of the planned generators.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
131
Figure 4.5.23. Records of the western marsh harrier in the study area
The sparrowhawk Accipiter nisus can be observed in the vicinity of all generators throughout the year. The sparrowhawk is not a specially protected species. However, it has been found in at least six locations on the periphery of the study area. One occupied nest was found in Es- tonia at a distance of approximately 310 m from WTG L_10.
The common crane Grus grus is a close migrant and can be found in the wettest areas through- out the study area as early as March. In total, the common crane has been observed at least five to seven sites during the breeding season, but not all of them have nested. Three nests were found, all located on the periphery of the study area (see Figure 4.5.24). Repeated ob- servations suggest that the common crane probably also breeds north of WTG L_03 in the vicinity of the Urga bog. There are currently few suitable nesting sites in the study area.
No large migratory flocks of migratory birds have been detected. The highest number of mi- grants recorded is 12 birds in a single site, and one to three birds in a local open landscape. No large flocks of roosting common cranes have been found in the area (e.g. in marshes).
Legend
Topographic map by the Latvian Geospa- tial Information Agency 1: 50,000
Records of the western marsh harrier
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
132
Figure 4.5.24. Common crane observations in the study area and nests found
The corn crake Crex crex is a long-distance migratory bird that inhabits farmland. During the survey, the corn crake was recorded on agricultural land only in the vicinity of Arakste (approx- imately 620 m from WTG L_16 and 850 m from L_17).
The stock dove Columba oenas is a migratory bird that arrives at its breeding sites (in different types of forests) in early March. During the breeding season, the stock dove was recorded at four sites in the central and northern part of the study area (see Figure 4.5.25).
Figure 4.5.25. Records of the stock dove in the study area
Legend
Legend
Topographic map by the Latvian Geospatial Information Agency 1: 50,000
Records of the common crane
Common crane’s nest
Common crane (migratory birds)
Planned WTGs
Existing roads
Survey area
Border of Latvia
Topographic map by the Latvian Geospatial Information Agency 1: 50,000
Stock dove (nesting)
Planned WTGs Existing roads
Survey area
Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
133
The European nightjar Caprimulgus europaeus is a long-distance migratory bird that inhabits pine and mixed forests, clearings and marshes in Latvia during the breeding season, returning from wintering grounds in early May. The density of the European nightjar found during the site survey is low.
The woodlark Lullula arborea is a migratory bird that returns to its breeding grounds in the second half of March. In the study area, the woodlark was recorded breeding on at least 11 sites (see Figure 4.5.26), mostly in open countryside: farmland and forest edges.
Figure 4.5.26. The woodlark observations in the study area
The whooper swan Cygnus cygnus is a semi-feral migratory bird that has been recorded – from 3 to 19 local birds in the vicinity of WTG L_07 during spring migration (first and second decade of April) in the area of the planned wind farm. Although the breeding sites of the whooper swan can be protected by the creation of a micro-reserve, there are no suitable breeding sites in the territory and its surroundings, and no breeding has been recorded. The nearest breeding was recorded in Lode village. The risk of collisions with the mast or rotor is generally low.
The common snipe Gallinago gallinago is a migratory bird that arrives in the area in early April. During the breeding season, it was found at 10 to 11 sites, mostly on the periphery of the study area, next to marshes. The common snipe is not a specially protected species. Cur- rently, the nearest WTG L_04 is planned at approximately 80 m, L_03 at 110 m, L_16 at 130 m, L_13 at 200 m, WTG L_1 at 250 m and WTG L_08 at approximately 300 m (see Figure 4.5.27).
Legend
Topographic map by the Latvian Geospa- tial Information Agency 1: 50,000
The woodlark (nesting)
Planned WTGs Existing roads
Survey area
Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
134
Figure 4.5.27. Records of the common snipe in the study area
The Eurasian woodcock Scolopax rusticola is a close migrant bird that returns to its breeding territories in spring in the third decade of March. The Eurasian woodcock inhabit different types of forests and have been recorded 8 times in the study area.
The Eurasian woodcock has been recorded in the immediate vicinity of WTG L_04, L_11, L_13, L_15, L_17, L_18, but due to its extensive flight range it is likely to occur throughout the study area.
The lesser spotted woodpecker Dryobates minor has been recorded at nine sites: four sites during breeding, with one record at approximately 50 m from WTG L_02, and five different sites in the wind farm during autumn migration.
In October, during migration near Arakste, two European golden plovers Pluvialis apricaria were found on agricultural land. No breeding of this species has been recorded in the sur- rounding marshes.
The northern lapwing Vanellus vanellus has been recorded both as a breeder (3-4 pairs) on agricultural land near WTG L_07, L_08, L_12 and L_14, and in migration, flying over the area and feeding up to 130 birds in the vicinity of Arakste.
The common kingfisher Alcedo atthis was observed in autumn at two sites along the Veserupīte. In autumn and winter, the common kingfisher may be seen in the watercourses and bodies of water closest to the wind farm that are not frozen. During the autumn migra- tion, three Eurasian curlews Numenius arquata were observed flying over the area.
The bean goose Anser fabalis and the greater white-fronted goose Anser albifrons were rec- orded in migration low over the site. This migration of geese has been recorded in flocks of 10 to about 200 birds in both spring and autumn. As there are no large areas where geese can feed, rest or roost, geese have only been seen flying over. No such stops have been found in the surrounding area. Geese observe wind farms and have an avoidance response, and there- fore collisions are rare.
Legend
Topographic map by the Latvian Geospa- tial Information Agency 1: 50,000
The common snipe (nesting)
Planned WTGs
Existing roads Survey area Border of Latvia
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
135
In general, most spring and autumn migration through the planned wind farm area takes place at low-elevation tree level. It should be noted that in poor visibility and adverse weather con- ditions, the trajectories of high-flying birds are generally lower, increasing the risk of collisions with both mast and blades. The most active migration takes place in the morning, when pas- serines pass through in a broad front. The largest migrants in numbers are the Eurasian chaf- finch Fringilla coelebs, the Eurasian siskin Spinus spinus, the parus Parus sp and the wood thrush Turdus sp. Migration routes are roughly south-north. On some days in autumn, migra- tion is high, with large numbers of birds passing through continuously.
In general, the site is outside the main narrow migration routes and there is no reason to believe that the number, flow or composition of migratory birds would differ significantly from equivalent forests in the surrounding area. The proposed WTG layout is located in a south- north direction, thus occupying as little of the migration corridor as possible.
4.5.3 Impact on ornithofauna
There are three main ways in which birds can be affected by the construction of a wind farm:
- causing persistent noise pollution,
Noise pollution is related to both the construction period of the wind farm, when birds may be disturbed by noise from construction machinery and human presence, and the operational phase of the wind farm, when disturbance is mainly from noise from the WTGs. Some studies, however, draw a broader link, indicating that the presence of WTGs, in general, causes signif- icant disturbance (e.g. wing movement).
Noise pollution has the greatest impact on species that are ecologically adapted to silence during certain key periods of their lives. These include all owls, which hunt largely by hearing, the western capercaillie, the black grouse, and all species that live in opaque environments and use their voice to communicate and their hearing to detect their enemies, such as the corncrake and the black stork. Important landfill sites have been identified in the area of the proposed operation to ensure the conservation of threatened owl species.
Similar to the noise generated by the WTGs during operation, construction activities in or close to forests may cause disturbance to passerine bird and owl species. Although these impacts are generally considered to be temporary, construction activities during periods of particular importance for birds are clearly likely to have a significant negative impact on at least the breeding success of that year. Given the relatively short duration of the impact, there is no reason to believe that the impacts on bird populations from construction activities would be significant overall.
- posing a direct risk of collision and death to species that hunt from the air or migrate at night when the towers are not visible,
In most studies in Western Europe, hawks and falcons are considered to be at high risk from wind farms (collision risk), due to their relatively small population sizes, low reproductive rates, long flight distances and their avoidance of wind farm sites. In particular, unlike large migrants, including geese, swans and cranes, which often change their flight routes and avoid the wind farm area after wind farms are built, this avoidance is less pronounced in diurnal birds of prey. Although some studies also identify avoidance of wind farm by diurnal birds of prey, this avoidance response is not as well established as it is in the context of large migratory birds.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
136
- This significantly reduces the available habitats.
Habitat loss, especially in forested areas, is also a major concern in the context of wind farm construction. Habitat loss takes two forms. For species that inhabit landscapes with little var- iability, habitat loss is caused by the construction of infrastructure associated with the wind farm: access roads and power lines. There is very little research specifically on habitat frag- mentation caused by wind farm infrastructure, but there is no reason to believe that it is any different from the fragmentation of continuous landscapes caused by any infrastructure. The landscape of the forest interior disappears at least 50 m on each side of the new track, forest edges are exposed, increasing the risk of predation, new predators and generalists enter the forest along the tracks, etc.
In terms of impacts on migratory birds, the proposed action area is generally outside the main narrow migration routes, which is also confirmed by the observations made during the assess- ment. The proposed layout of the WTGs is located in a south-north direction, thus occupying as little of the migration corridor as possible and not causing significant negative impacts on migratory birds.
Priority species in and around the wind farm area that require special attention in the context of impacts are the lesser spotted eagle, the black grouse, the hazel hen, the pygmy owl, the three-toed woodpecker and the white-backed woodpecker (see Figure 4.5.28), as well as the common buzzard, which is not currently a specially protected species but the most common bird of prey species in the area of the planned wind farm.
Figure 4.5.28. Priority species observations and protection areas in the area of the planned Lode wind farm
Legend
Topographic map by the Latvian Geospatial In- formation Agency 1: 50,000
Lesser spotted eagle
White-backed woodpecker
Hazel hen
Pygmy owl
Three-toed woodpecker
Black grouse
Planned wind turbine generators (WTGs)
Existing roads
Survey area
Border of Latvia
Priority sites (Pygmy owl) Priontar sites (White-backed wood- pecker)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
137
Lesser Spotted Eagle Clanga pomarina
The lesser spotted eagle is currently not a threatened species (Least Concern) both globally and regionally. According to the latest estimate, 3,753 to 4,914 pairs breed in Latvia, and the population trend is stable in the long term but increasing in the short term40.
The closest distance threshold from the nest to the wind farm, as defined in the lesser spotted eagle species conservation plan, is almost 3 km (2,765 m), although this can be as high as 5 km in unfavourable feeding conditions.
Although WTGs L_17 and L_19 are 450-800 m from a successful nest in Latvia and L_06 is 1,200 m from a nest in Estonia, it has been found that the most potentially important hunting (foraging) habitats are in the vicinity of nests rather than in the central part of the planned wind farm. One of the factors why the central area of the planned wind farm is not important for food production is the relatively small amount of agricultural land under sown crops, while permanent grassland is not found. The second barrier is a 1.5 km-wide forest strip between the eagle nests in Estonia and the agricultural areas in the wind farm. These factors generally contribute to the lesser spotted eagle’s preference for foraging in large areas around the nest, and the planned wind farm area is not a priority foraging area for the lesser spotted eagle, although it may be. Therefore, the expected significant negative impacts due to the short dis- tance from the WTGs to the nest should be considered in the context of the low importance of the site as a foraging area. Consequently, impacts will be significantly reduced by appropri- ate mitigation measures (see Chapter 4.5.4).
Given that the nesting and main feeding areas are located in the vicinity of the proposed wind farm, although WTGs L_01, L_02, L_03, L_05, L_06, L_07, L_08, L_09, L_10, L_14, L_15, L-16 are located within 2,800 m of an occupied nest, they are not expected to have a significant negative impact on the Lesser Spotted Eagle or fragment its habitat when equipped with bird identification systems.
In addition, in the Utilitase Saarde wind farm, about 20 km away, two of the nine WTGs are closer than 1 km (580 and 730 m) and one turbine is 1,240 m from a nest of the lesser spotted eagle.
The route of the new cable line to be built is planned in the buffer zone of the micro-reserve directly along the micro-reserve itself. The impact of the proposed action on this micro-re- serve has been assessed by an external expert in consultation. According to the expert, in order to ensure that the conditions of the micro-reserve are not degraded, it is important that the planned cable line is located away from the projection of the canopy of the outermost trees, as damage to the roots of the trees growing there could have a negative impact on the micro-reserve itself. Similarly, construction work during the lesser spotted eagle’s stay in the micro-reserve could degrade the quality of the habitat.
Black grouse Lyrurus tetrix
Habitat loss of the black grouse can be affected by fragmentation, noise, collisions with WTGs or fences.
40 Ķerus V., Dekants A., Auniņš A., Mārdega I. (2021). Breeding bird atlases of Latvia 1980–2017. Riga: Latvian Ornithological Society.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
138
In good, clear weather, when wind speeds are low, the grouse’s bark (song) can be heard up to 3 km away. When the noise from the WTGs exceeds the song of the grouse, bird communi- cation is disrupted, which can lead to nest abandonment, loss of territory and reduced bird numbers. However, the noise impact of the WTG during the grouse rutting (song), which oc- curs at low wind speeds of between 5 and 7 m/s, is negligible, as the WTG starts operating at a wind speed of 3 m/s and its output increases gradually as the wind speed increases.
The black grouse flies low, so the risk of collisions with WTG blades is low. However, as grouses are not very agile fliers, they are at a higher risk of collisions with various structures, including masts or fences. This risk is particularly high in low visibility conditions and in spring, when grouses fly to their breeding grounds in the dark. At these times, they may not be able to see the overhead lines and assess the distance to them. The risk of collisions with masts is high at all planned stations in the northern part of the Lode wind farm.
The construction of the wind farm will have a negative impact on grouses, so it is important to implement mitigation measures (see Chapter 4.5.4).
The hazel grouse Bonasa bonasia
The habitat of the hazel grouse is mixed coniferous and deciduous forests. It is a pronounced sedentary, living most of its life in a relatively small area, so any change or disturbance to its habitat will have an ongoing impact on it.
There are no detailed studies on the impact of wind farms on the hazel grouse. However, it is likely that the most significant negative impacts on the hazel grouse may result from the re- duction of available habitat. This decline can range from a decline in habitat quality to habitat destruction. Habitat quality can be compromised by noise from WTG and other anthropogenic disturbances.
WTG in forests will have a negative impact on the hazel grouse. The most significant impacts may be from the degradation or loss of available habitats and the risk of collisions with turbine masts and fences. Five generators (WTGs L_02, L_03, L_11, L_12, L_15) are planned within 200 m of the nearest known habitat of the hazel grouse, and 16 planned generators are within 500 m of these (additional WTGs L_01, L_04, L_05, L_08, L_09, L_10, L_14, L_13, L_16, L_18, L_19).
The expert concludes that no significant negative impacts on the hazel grouse by the Lode wind farm are expected from the implementation of the mitigation measures (see Chapter 4.5.4).
Pygmy owl Glaucidium passerinum
As the pygmy owl needs forests that are little affected by economic activities, habitat degra- dation or loss is considered to be the most significant potential adverse effect.
The construction of WTG L_18 in the pygmy owl priority protected area and L_11 within 10 m of the pygmy owl priority protected area will make the areas unsuitable or at least less suitable for the pygmy owl during the entire lifetime of the wind farm, causing noise emissions and other anthropogenic impacts. The developers of the environmental impact assessment con- sider that the compensatory measures recommended by the expert (see Chapter 4.5.4) will offset these impacts by creating the conditions for the development of an area suitable for the species. At the same time, monitoring measures in the affected habitats are also foreseen.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
139
The location of the other planned generators is outside the priority conservation areas defined in the Species Conservation Plan.
The risk of collisions, which is mainly associated with the mast of the WTG, is assessed as low if the requirements and actions in Chapter 4.5.4 are ensured.
Three-toed woodpecker Picoides tridactylus
At the global level, the three-toed woodpecker is not considered a species of least concern, but at the regional level in Latvia it is critically endangered, with an extremely high risk of extinction, and therefore its conservation requires special attention. There is a lack of research on how noise pollution affects the three-toed woodpecker and its habitat selection. While it is believed that the conservation of existing habitats is paramount, it is advisable to keep abreast of changes in the area for this species and to comply with the technical requirements provided in the opinion for noise mitigation at WTGs.
In the case of the Lode wind farm construction, the habitats of the three-toed woodpecker will be preserved, as the planned WTGs are located beyond them.
The risk of collisions with blades is assessed as low, but the mast needs to be painted in a contrasting colour to make it visible in low visibility conditions (see Chapter 4.5.4). In view of these requirements, the impact will be negligible.
White-backed woodpecker Dendrocopos leucotos
The WTGs are located outside the priority conservation areas identified in the species conser- vation plan, but there are several (especially in the northern part of the study area) and the WTGs are planned close to them.
To maintain the good quality of the habitats of the white-backed woodpecker, it is important not to destroy or drain them, while preserving their hydrological regime. WTGs should be lo- cated as far as possible from priority protected areas and the white-backed woodpecker hab- itats. In this way, habitats will not be fragmented and will have the least possible negative effect.
The risk of collisions with blades is assessed as low. The requirements for the colour of the mast and its visibility in conditions of low visibility as specified in Chapter 4.5.4 must be taken into account.
Common buzzard Buteo buteo
As the entire area of the proposed wind farm is characterised as an important breeding, rest- ing and feeding area for the common buzzard, where it can be found throughout the year, especially during the breeding season, the overall negative impacts of the proposed activities are considered to be high. The common buzzard is a species that shows little or no avoidance behaviour in the vicinity of WTGs, and may build nests between existing stations. It is the species of bird of prey most often found dead near WTGs in northern Europe, mainly adult birds.
As the common buzzard is continuously present throughout the site, its population is in long- term decline and the risk of collisions is high, it is essential to comply with the technical re- quirements for generators, in particular for bird detection systems, as outlined in Section 4.5.4.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
140
The following is an overview of the expected impacts of the proposed Lode wind farm on other specially protected bird species and micro-reserve bird species, subject to the require- ments and mitigation measures outlined in Section 4.5.4:
- Western capercaillie Tetrao urogallus. The construction of the wind farm may have a significant impact on the populations of capercaillie, leading to habitat degradation, loss, fragmentation and noise pollution. No WTGs are planned in the study area within 1 km from the centres of the capercaillie rutting areas. If the changes result in a WTG planned closer than 1 km, the theoretical location of the rutting area should be verified by specifying if and where it is located, and then adjusting the WTG operation during the morning hours of April and May to reduce the impact of noise and flicker.
At present, it is not expected that the construction of the wind farm will result in the destruction of suitable habitats or that the planned wind farm will have a significant negative impact on the surrounding population of capercaillie.
The risk of collisions with WTG blades is low, but it is possible with masts or fences.
The implementation of the mitigation measures identified in Chapter 4.5.4 will not have a significant adverse effect on the local population of capercaillie.
- Grey partridge Perdix perdix. As the density of this species is low in the area and the most important habitats for the grey partridge are located outside the planned wind farm area, the construction of the wind farm is not expected to have a significant neg- ative effect on the local population of the grey partridge.
The risk of collisions with wind turbine masts and fences is high, while the risk of col- lisions with WTG blades is low.
- Black stork Ciconia nigra. No feeding or nesting territories of the black stork have been identified in the area of the proposed activity and its immediate vicinity. Potentially suitable feeding areas include some sites along the Krūmiņupīte. However, in the view of the report’s authors, this is not a sufficient justification for imposing restrictions on activities along the Krūmiņupīte.
- White stork Ciconia ciconia. The white stork inhabits farmland, where it forages in the open landscape within a radius of 1 to 2 km around its nest. As all the nearest planned WTGs are located in forested landscapes and at least 1 km from the nest, storks are not expected to forage in the vicinity of the WTGs. Overall, the risk of collisions with WTGs during both breeding and migration is low, and the overall impact of the wind farm on the species is expected to be negligible.
- Boreal owl Aegolius funereus. To ensure a favourable conservation status, it is essen- tial to maintain and sustain a sufficiently large habitat with mature and overgrown co- niferous stands, minimising the impact of economic activities and limiting sound pol- lution. Subject to the requirements and mitigation actions outlined in Chapter 4.5.4, the risk of impacts is low.
- Ural owl Strix uralensis. The proposed WTGs are located outside the priority conser- vation areas identified in the Ural owl conservation plan and there are no such areas in the immediate vicinity. Negative impacts are associated with the abandonment of nesting territories due to disturbance (e.g. noise) or habitat destruction (logging). If
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
141
the recommended protection measures for the pygmy owl are followed, they will also be effective in protecting the Ural owl. In addition, potential nesting sites such as trunks, trees with large cavities and large nests should be preserved. The risk of colli- sions with the mast of the generator is medium.
- Three-toed woodpecker Picoides tridactylus. It is critically endangered in Latvia at the regional level, with an extremely high risk of extinction, and therefore its conservation requires special attention. In the case of the planned wind farm, the habitats of the three-toed woodpecker will be preserved as the planned WTGs are located outside them.
The risk of collisions with blades is low, but by ensuring the mast is painted and visible in low visibility conditions, the impact will be negligible.
- Middle spotted woodpecker Dendrocoptes medius. The risk of collisions with blades or masts is low and the impact of the proposed wind farm, including noise, will not be significant.
- Black woodpecker Dryocopus martius. The construction of the wind farm will have a negative impact on the habitats of the black woodpecker in the vicinity of the genera- tors. Ensuring the favourable status of the black woodpecker is important for other protected species, such as the pygmy owl and the stock dove, which use the hollowed- out cavity of the black woodpecker as secondary cavity nesting sites. Although the risk of collisions with WTG blades is low, the black woodpecker’s active flight in the wider area means that its risk of collisions with masts is much higher throughout the year. Ensuring that the mast is painted and visible in low visibility conditions reduces this risk.
- Grey-headed woodpecker Picus canus. The risk of collisions with the WTG blades at the planned height is low, but the risk of collisions with the mast during migration may be medium, so it is important to ensure that the mast is painted and visible in low visibility conditions. The construction of the wind farm will not have a significant neg- ative impact on the breeding habitat of the grey-headed woodpecker.
- Wryneck Jynx torquilla. The risk of collisions with blades is low, but during migration there is a risk of collisions with the mast, so it is important to ensure that the mast is painted and visible in low visibility conditions. If these requirements are met, the re- sulting impacts will be insignificant.
- European honey buzzard Pernis apivorus. The planned wind farm generators are cur- rently located close to the area populated by the European honey buzzard. Therefore, it is expected that during the breeding season, the European honey buzzards (one to two pairs) may be regularly observed in the vicinity of all planned WTGs. WTG L_06 is located approximately 740 m from the honey buzzard’s nest, causing significant ad- verse impacts as the honey buzzard’s foraging flights are predominantly low, while its mating flights and territory guarding are at rotor height. Mitigation measures are de- scribed in Chapter 4.5.4.
The risk of collisions is medium to high, for which the requirements of Chapter 4.5.4 are essential.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
142
- The Eurasian goshawk Accipiter gentilis has not been recorded in the area of the pro- posed activity. The risk of collisions is medium.
- The white-tailed eagle Haliaeetus albicilla has not been recorded in the area of the proposed activity. The risk of collisions is assessed as being low.
- Hen harrier Circus cyaneus. According to the latest count, few or no birds nest in Lat- via. One passerine bird has been recorded in the vicinity of the proposed activity area. Overall, the impact and risk of collisions is low.
- Western marsh harrier Circus aeruginosus. The flight of the western marsh harrier in the vicinity of the breeding site may reach the currently planned rotor height, but is not currently expected in the area. The impact and collision risk is low.
- Common crane Grus grus. There are not many suitable nesting sites in the area of the proposed action. Large flocks of migratory birds, either migratory or local, were not detected in the counts. Therefore, the negative effects of the proposed action are con- sidered to be minor, as the common cranes exhibit strong avoidance behaviour.
- Corn crake Crex crex. is not found in the area of the proposed activity. The risk of im- pacts and collisions is assessed as low.
- Stock dove Columba oenas. No breeding sites of the stock dove will be destroyed as a result of the proposed action.
There is a risk of collisions when nesting in the immediate vicinity of WTG, but the risk is low. The construction of the wind farm will not have a significant impact on the growing stock dove population in Latvia.
- European nightjar Caprimulgus europaeus. Suitable nesting habitats (marshes and margins) are available in the area and the wind farm is unlikely to have a significant negative impact on breeding or available habitats of the European nightjar in the long term. The risk of collisions is low.
- Woodlark Lullula arborea. Given the high and long breeding flight, which is possible both day and night, as well as the recurrent late breeding, the risk of collisions is as- sessed as medium. The development of the wind farm is not expected to have a sig- nificant impact on the amount of habitats available. Overall, the construction of the wind farm is not expected to have a significant negative impact on the currently stable population of the Latvian woodlark.
- Whooper swan Cygnus cygnus. The impact and risk of collision with the mast or rotor is generally low.
- Common snipe Gallinago gallinago. The common snipe is not a specially protected species. However, during the breeding season, the species is characterised by a wide arcing flight with sharp dives that reach the planned rotor height of WTGs. The cur- rently assessed risk of collisions could be potentially significant. Noise from WTGs can also have a negative effect by drowning out the rutting ‘song’ of the common snipe’s flight. It is advisable to keep an eye on this species and its changes during monitoring.
- Eurasian woodcock Scolopax rusticola. The Eurasian woodcock is not a specially pro- tected species, but will be adversely affected by the proposed activity. During the
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
143
breeding season, the Eurasian woodcock will circle over large areas of forest at dusk, emitting a specific low-pitched rutting call that will be muffled by noise from the WTGs.
As several generators have a planned spacing of around 700 m between turbines, it is likely that the Eurasian woodcock will not fly between the generators and part of this area will no longer be used.
In the opinion of the authors of the report, it is worth noting that any assessment of the im- pact of any proposed wind farm on ‘forest bird’ species, whether in the context of habitat loss, noise impacts or other factors, is an assessment with a very high degree of uncertainty. Wind farms have only been built on a large scale in forests in the last 5 to 10 years, but there are very few studies on the consequences of locating WTGs in such areas, and even the few stud- ies paint a less than positive picture for future populations of ‘forest birds’, especially in re- gions where large numbers of wind farms are being built. The report repeatedly points out that the study area is mainly forest, which has been overgrown by agricultural land, most of which has been cleared in recent decades. The condition of the existing forests, the diversity of birds assessed during the fieldwork and the number of observations suggest that the im- pact on forest bird populations may not be significant if the WTGs are located in the area of the planned wind farm, but the actual impact should be monitored more closely during the construction and operation of the wind farm by ornithofauna monitoring in and around the periphery of the wind farm.
An important aspect that is assessed in environmental impact assessment processes is the cumulative impact of the proposed development on other activities or developments. Cumu- lative impacts can also arise in the context of bird conservation, especially if several wind farms are built in a given region. In the view of the report’s authors, a full assessment of cu- mulative impacts in the context of bird conservation is not currently possible. It is clearly pos- sible to argue that such impacts will arise from the number of wind farms planned in the Valmiera and Limbaži regions alone, as well as in the Estonian border area of Mulgi.
In light of the above, the planned wind farms in the region are expected to have cumulatively negative impacts on bird populations, which may also be significant in their extent. Unfortu- nately, it is not practically possible to quantify the magnitude of the impact. In the view of the rapporteur, the precautionary principle applied in the environmental impact assessment pro- cesses leads to conclusions based on a worst-case scenario, i.e. all the planned wind farms are built. Given that it is not possible to plan joint mitigation measures at regional or national level, the report considers that all possible mitigation measures should be taken in each wind farm, which can potentially lead to a situation where the overall impact does not pose a sig- nificant threat to the conservation of certain bird species populations. This approach has also been taken into account in identifying and recommending mitigation measures (see more in Chapter 4.5.4 of the report).
4.5.4 Mitigation measures
The developers of the planned wind farm should take into account that the situation of birds in nature is dynamic. This assessment takes into account the current state of the site and the current bird attractions. These conditions are bound to change during the construction and operation of the wind farm, so even after all permits have been granted, additional mitigation measures may be required if significant impacts are identified.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
144
The ornithologists involved in the EIA have not indicated that specific protection measures should be implemented to protect birds that pass through or use the study area during migra- tion seasons. In the view of the report’s authors, having assessed the data collected by the experts, as well as the location of various sites attracting migratory birds, there is reason to agree with the ornithologists’ opinion that no specific measures need to be planned at pre- sent. The risks of migratory birds colliding with the proposed wind farms are assessed as low, but given the high uncertainty in the current forecast, it would not be considered prudent and evidence-based to prescribe specific mitigation measures at this time. If monitoring during the operation of the proposed wind farm reveals evidence of significant impacts on migratory birds, mitigation measures may be imposed to protect birds during both migration seasons.
WTGs and cable line route location analysis
During the operation of the planned Lode wind farm, the main negative impact on birds is the loss of habitat for some species and the deterioration of habitat quality over several decades. Loss of habitats41 can be manifested by habitat destruction, abandonment and avoidance (due to noise, light, flicker, anthropogenic pressure, etc.). It is the location of stations and assembly sites that will most determine the magnitude of these negative impacts.
In the context of the bird species breeding in the area or its periphery, the expert has recom- mended a number of mitigation measures, which are described below, supplementing the expert’s recommendations with the views of the report’s authors.
It is recognised that the most important action to mitigate risk is to select station locations that will have the least cumulative negative impact on the surrounding habitats and popula- tions of bird species. During the environmental impact assessment process, the location of the wind farm has been adjusted in line with the expert’s recommendations, including the removal of WTGs whose significant negative impacts cannot be reduced by appropriate miti- gation measures or compensated for by compensatory measures.
The guidance to plan the WTGs in a south-north direction, trying to occupy as narrow an area as possible, has been fully endorsed during the planning of the WTG siting and wind farm configuration. It also requires that they be located in, or as close as possible to, young wood- land or farmland rather than mature woodland. The planned stations will be located as far as possible from areas with high densities of specially protected and micro-reserve bird species or suitable priority habitats for them, avoiding locations that contribute to habitat fragmenta- tion for these species.
The report’s authors point to the need to ensure a balance between economic development and environmental preservation, promoting harmonious interaction between man and na- ture. This principle is implemented in a way that the negative environmental impacts of any development activity are either mitigated or compensated for by appropriate measures. This approach should also be followed in the case of the impacts from the WTG concerned of the planned Lode wind farm.
The report’s authors agree with the expert’s conclusion that the construction of WTG L_17 on the planned site is not recommended, in preference to WTG L_17A if it is feasible. It also sup- ports the ornithologist’s view that for the protection of the lesser spotted eagle and the com- mon buzzard, the equipping of WTGs with systems that identify birds and stop the wind farm
41 Habitat means both a place where a bird can breed and nest and a place where a bird can feed and rest.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
145
in the event of a collision threat significantly reduces the negative impact of WTG on these species. Given that their most important foraging habitats are concentrated in the vicinity of breeding sites that do not affect the central part of the planned wind farm, the equipping of WTGs with appropriate bird identification systems can be assessed as a sufficient mitigation measure.
Recommended by expert for WTG no. L_02 mitigation measures for potential adverse effects during the period 1 March to 1 July, in the mornings one and a half hours before and up to five hours after sunrise and in the evenings two hours before and up to one and a half hours after sunset to keep the station switched off provided that the wind speed is less than 5 m/s during this period, are assessed as sufficient to mitigate the adverse effects.
The report advocates a special precautionary approach to the retaining of the priority conser- vation area to avoid the risk of reducing its quality and significance. Noise has been identified as a major source of risk. As construction of WTG no. L_11 and no. L_18 further from the pygmy owl priority conservation area is not feasible, measures should be applied to compen- sate for negative impacts. In addition, in order to ensure an adequate quiet regime and to mitigate the noise impact of WTGs, restrictions on their operation by prohibiting their opera- tion at wind speeds below 5 m/s should be considered sufficient and consistent with the pre- cautionary approach.
The location of WTGs L_01 and L_03 has been adjusted during the EIA process in line with the expert’s recommendations. The construction process and operation of the WTGs (including station maintenance) generate noise that can affect the feeding and nesting activities of white-backed woodpeckers. By limiting WTG operations and human activity (during construc- tion and maintenance) during the breeding season from the beginning of March to the end of June, potential negative impacts are mitigated. In the absence of studies on the impact of sound from wind farms on white-backed woodpeckers, caution and further monitoring should be taken to assess the impact of WTGs due to noise and disturbance. This includes studying bird behaviour and adapting the operation of WTGs to the observed data.
According to the expert’s recommendations, in order to mitigate the impact of the planned construction of the cable line on the quality of the micro-reserve, the route should be located at least at the distance of the crown projection of the outermost growing trees from the micro- reserve area. According to the expert’s opinion, the restrictions laid down in the legal provi- sions for the lesser spotted eagle micro-reserve buffer zone between 1 March and 31 July apply to the construction of the cable line. These restrictions also apply to construction works in the canopy projection of trees located outside the micro-reserve buffer zone. In the expert’s opinion, it is recommended that the construction of this section of the cable line through and along the buffer zone of the micro-reserve be carried out as late as possible in the autumn. The ideal time for construction work is from 1 September to 29 February. With these precau- tions, the construction of the cable line will not have a negative impact on the micro-reserve.
Mitigation measures for construction and technical characteristics of WTGs
The expert involved in the impact assessment has pointed to a number of general measures for the construction of the proposed wind farm:
- For electricity supply and communication, lay buried cable lines along roads; - necessary deforestation works outside the bird breeding season from 1 August to 1
March and the retention of ecological and hollow trees in clearings;
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
146
- It is preferable not to use fencing around stations. However, if a fence is necessary (also in the case of a substation), it should be as low as possible and avoid hurdles, which can be more difficult for birds to see.
The expert opinion also includes mitigation measures for wind farms:
- choose the quietest possible stations to minimise noise disturbance;
- The mast must be smooth and tubular so that birds cannot perch on it;
- the lower 45 m or so of the mast should be coloured dark, e.g. the colour of the sur- rounding trees and environment. This will reduce the number of potential collisions, e.g. for the black grouse, the hazel grouse and various migratory and other bird spe- cies;
- Find a way to increase the contrast of at least one blade (especially at the tip of the blades), as both moving and stationary, hardly visible WTG blades present an increased risk of collisions during migration;
- stations must be equipped with automated bird detection and identification systems capable of identifying large bird species and, if necessary, momentarily reducing the rotor speed or stopping it completely. The number of detection systems must be such that they cover the entire area of the wind farm or a radius of at least 1.5 km around the masts of all generators. They should have bird identification devices, not bird de- terrent devices.
In the view of the report’s authors, the implementation of such measures significantly reduces the potential impact on the site’s ornithofauna. The analysis concluded that some of these measures have already been taken into account during the planning and EIA process for the wind farm: only buried cable lines are planned, infrastructure is to be located as close to the road network as possible, and the construction of the WTGs is planned without affecting the hydrological regime of large surrounding areas.
The report supports the expert’s recommendation for automatic detection and generator stopping equipment in the planned wind farm. The use of detection devices would allow to protect both the dispersed part of the population (non-nesting and migratory birds) and the part of the birds nesting in the wind farm or its periphery. According to the report’s authors, the equipment should primarily provide identification of bird species with large breeding ter- ritories, including honey buzzards, white-tailed eagles, ospreys and golden eagles. Taking into account the information on known breeding sites as well as the observation data, the lesser spotted eagle, goshawk, black stork, white stork and common buzzard should certainly be included in the above list of species. There are currently two types of detection equipment available on the market to stop generators:
- Equipment that tracks the flight paths of birds defined as sensitive and stops the op- eration of certain generators by predicting the risk of collisions;
- Equipment that tracks the flight paths of birds defined as sensitive by identifying them, activates deterrent systems if the bird approaches a station, and stops the operation of certain generators if the bird does not change its flight path.
According to the view of the report’s authors, the operation of wind farms in general should be ensured to cause as little disturbance to birds as possible, and therefore only Group 1
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
147
installations should be allowed in the planned wind farm. Although the planned WTGs cover a relatively small area overall, the use of deterrent systems is likely to make them less attrac- tive to birds, even if they contain good feeding areas. Painting of the lower part of the WTG tower is also supported as it may reduce the likelihood of collisions with passerines.
The recommendation to choose the quietest possible WTGs is also welcomed as it would re- duce the impact of the proposed wind farm on bird species that may be disturbed by noise from the WTGs. For example, stations with serrated trailing edge wings are 2 to 3 dB quieter. Such wind farms reduce the size of the noise impact zone more than twice. Currently, all man- ufacturers evaluated offer serrated trailing edge wings for their stations, even if this is not considered a standard solution, which should be recommended not only to reduce the noise impact on natural values but also for people living in the wind farm surroundings. In addition to the use of wings, it is advisable to choose the quietest possible stations, as the noise emis- sions from the stations themselves can also vary considerably, unless there are other environ- mental reasons why louder stations are the best technical solution.
See Table 6.1.2 for a summary of the required mitigation measures.
Although the implementation of the above measures will significantly reduce the negative impacts, it will not be possible to eliminate them completely for owl species, for which addi- tional compensatory measures must be planned, including the placement of suitable cages (in accordance with article 7 of the regulations on habitats). This should include the installation of cages for owls and woodpeckers in the priority conservation areas of the proposed wind farm and its surroundings, as well as around the observation sites (with signs of breeding) for these species: at least 10 cages for the pygmy owl and at least seven cages for the Ural owl, with monitoring of the use of these cages.
The expert also recommends that the possibility of maintaining mature forests (see Figure 4.5.29) or other forests of equivalent conditions in the vicinity of WTGs L_02 and L_03 during the operation of the wind farm should be considered, carrying out no cutting in such forest sections.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
148
Figure 4.5.29. Recommended mitigation sites where it is desirable to maintain mature forest during the lifetime of the wind farm
4.5.5 Evaluation of alternatives
As indicated in Chapter 3.1 of the report, no mutually comparable alternatives have been de- fined for the location of the proposed Lode wind farm, but the option (alternative) advanced for in-depth assessment is based directly on the proposals made initially and during the pro- cess by nature experts relating to birds, bats and habitats.
According to the available information, the environmental impact assessment process has shown that none of the models assessed has any known characteristics or technical ad- vantages that would make it superior to others in the context of ornithofauna conservation. Each of these models lacks a compelling advantage that would warrant a more prominent assessment in this respect. Therefore, from an ornithofauna conservation perspective, the chosen model has no relevance or particular impact.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
149
4.6 Landscape and visual impact
This chapter assesses the significance of the impacts of the proposed Lode wind farm on the surrounding landscape and makes recommendations for avoiding or reducing the significance of impacts in the event of the proposed development. The report was prepared by certified landscape architect Gunita Čepanone (LAAA certificate no. 45–201), which is attached as An- nex 8 to the report and has been prepared on the landscape impact in the territory of Latvia, as well as the opinion of the Estonian landscape architect Heikki Kalbergs, which is attached as Annex 9 to the report and has been prepared on the landscape impact in the territory of Estonia. Landscape protection policy and legislation
Latvian landscape policy
Latvian landscape policy is based on the European Landscape Convention (also called the Flor- ence Convention), which Latvia ratified in 2007. By ratifying the convention, Latvia has under- taken to implement the measures set out in the convention, including integrating landscape policy into its regional and urban planning policies, cultural, environmental, agricultural, social and economic policies, as well as any other policies that may directly or indirectly affect land- scapes. Wind farm development has a significant impact on the landscape, and environmental impact assessment is one of the tools to assess and minimise this impact. Latvia does not currently have any up-to-date policy document directly related to the national landscape pol- icy, but aspects of landscape value, use and protection are integrated into various sectoral policies and regulatory frameworks. Within the framework of the national research pro- gramme on sustainable management of land resources and landscapes: assessment of chal- lenges, methodological solutions and proposals42, landscapes of national importance have been defined, among which the area for the construction of the Lode wind farm is not in- cluded43.
Highlighting the most outstanding values of the Latvian landscape, the Latvian cultural canon includes eight cultural landscapes, among which the landscape of the Lode area is not in- cluded44. The list of Latvia’s more than 50 landscape treasures, nominated by the Latvian pub- lic and selected by experts, also does not include the landscapes located in the development area of the Lode wind farm45.
Spatial planning documents
There is no unified regulatory framework for landscape assessment, planning, management and use in Latvia. One of the instruments of landscape policy in the country is spatial planning documents at different levels.
According to the Valmiera municipal sustainable development strategy for the 2022–2038 pe- riod, there are no particularly valuable landscape areas or road sections defined in the area of the planned activity. The closest of these areas is the Rūja River landscape, which is also des- ignated as a landscape conservation area of the Northern Vidzeme Biosphere Reserve (NVBR)
42 https://www.arei.lv/lv/projekti/2020/ilgtspejiga-zemes-resursu-un-ainavu-parvaldiba 43 https://experience.arcgis.com/experience/495c3f2dc51b439180c4afafb4b0fc83/page/Ainavas- kart%C4%93s/?views=Nacion%C4%81l%C4%81s-ainavas 44 https://kulturaskanons.lv/2021/06/03/latvijas-kulturas-kanons-papildinats-ar-ainavu-sadalu/ 45 https://ainavudargumi.lv/saraksts/?section=5
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
150
and is located on the southeastern side of the proposed development area, approximately 3 km from the nearest WTG.
Figure 4.6.1. Spatial structure map of Valmiera region nature territories (map source: Valmi- era region sustainable development strategy 2022–2038) (red square marks the location of
the proposed activity area)
NATURA 2000 European site of nature conservation Northern Vidzeme Biosphere Reserve
Landscape protection area
Water area
Forest area
Settlement
Latvian border
Region border
Parish and town boundary
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
151
Figure 4.6.2. Map of Annex 5 to the Rūjiena region spatial plan binding for the territory of the planned activity entitled Territory where it is allowed to build wind power plants without
height restrictions (red square marks the location of the territory of the planned activity)
Based on the spatial plan of Rūjiena region for 2012–2024, which is binding for the territory of the planned activity, the WTG is located in the territories with permitted (planned) use of agricultural territories (L) and forest territories (M). Taking into account that paragraph 25.1.4 of the territorial use and development regulations states that wind power plants with a ca- pacity exceeding 20 kW are allowed to be located in the territories of industrial and technical facilities (R), and in the local planning, including in agricultural territories (L; see Chapter 2).
Area where wind turbines are al- lowed without height limitation
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
152
According to the act on the North Vidzeme biosphere reserve (NVBR), all areas of the pro- posed activity fall within the NVBR neutral zone. According to Annex 2 of cabinet regulation no. 303, on individual rules for the protection and use of the North Vidzeme biosphere re- serve, the areas where the installation of WTGs is allowed without height limitation are de- fined, and among them is the area of the planned activity. The indicated areas also coincide with the scheme of Annex 5 to the binding spatial plan entitled Area where wind power plants without height restrictions are allowed to be built, but it should be taken into account that the area may be subject to exclusion zones for the installation of WTGs, as part of various sectoral studies.
Landscape impact legislation in Estonia
In Estonia, landscape protection is regulated by a series of acts aimed at preserving natural habitats, biodiversity and cultural heritage as part of the landscape. The main regulatory en- actments on landscape protection in Estonia are listed below:
- Nature Conservation Act (Looduskaitseseadus46):
The Nature Conservation Act sets out the general framework for the principles and rules for the conservation of landscapes, ecosystems and biodiversity. The act establishes various pro- tected areas, including national parks, nature reserves and landscape protection zones. It also sets out general principles for the management and use of these sites to ensure their protec- tion.
- Planning Act (Planeerimisseadus47):
The Planning Act regulates land use planning to ensure sustainable development and land- scape protection. It sets out the processes for preparing and implementing national, regional and local plans.
The act stresses the need to take account of environmental impacts, including landscape im- pacts, at all levels of planning.
- Act on environmental impact assessment and environmental management (Keskkonnamõju hindamise ja keskkonnajuhtimissüsteemi seadus48):
The act requires an environmental impact assessment (EIA) for projects that are expected to have significant effects on the environment, including landscapes.
- Act on the preservation of cultural heritage (Muinsuskaitseseadus49):
The act on the preservation of cultural heritage provides for the protection of cultural herit- age, including landscapes with historical and cultural values. This act includes requirements for the designation and management of areas for the protection of cultural heritage in order to preserve their cultural and landscape values.
- Forestry Act (Metsaseadus50):
46 https://www.riigiteataja.ee/akt/LKS 47 https://www.riigiteataja.ee/akt/PlanS 48 https://www.riigiteataja.ee/akt/KeHJS 49 https://www.riigiteataja.ee/akt/119032019013 50 https://www.riigiteataja.ee/akt/MS
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
153
The Forestry Act regulates the sustainable management and use of forests. It includes provi- sions aimed at protecting forest landscapes and preserving biodiversity. This act sets out re- quirements for forest management plans and the protection of valuable forest habitats.
According to the regulatory framework, requirements and restrictions for planned activities, including in the context of landscape protection, are determined at the level of local govern- ments, in their planning documents and building regulations.
The area of the proposed activity in Mulgi, bordering Estonia (Mulgi vald, before the adminis- trative reform of Abja municipality), whose general planning document51 states that the con- struction of wind farms is not allowed in areas of scenic value identified in the municipality’s planning document.
In Estonia, minimum distance requirements between wind farms and residential areas are not set at national level. Instead, these distances are set by local authorities in their building reg- ulations. The Mulgi county binding rules do not impose restrictions, such as minimum dis- tances to dwellings.
4.6.1 Impact assessment approach
Landscape impact assessment approach in Latvia
To assess the development of wind farms in Latvia, the guidelines for environmental impact assessment and recommendations on requirements for the construction of wind power plants52 and the guidelines for initial environmental impact assessment for the construction of wind power plants53 have been developed, which also include guidelines for landscape im- pact assessment and some mitigation solutions.
In assessing the visual impact of the proposed Lode wind farm, methods based on the assess- ment of the visual structure of the surrounding landscape using the characterisation and as- sessment method have been applied. These include:
- onsite inspection of the site and the terrain of the proposed operation;
- study of available cartographic material;
- identification of existing acts, regulations and other binding documents;
- identification of areas with particularly valuable landscape features;
- assessing impacts from publicly relevant vantage points;
- identification of potentially sensitive sites, such as nearby settlements (rural vil- lages and farmsteads), valuable and important cultural and historical heritage sites;
- assessment of potential cumulative impacts;
51https://mulgivald.ee/documents/18442398/21825375/Lisa+12.+Abja+valla+%C3%BCldplaneeringu+sele- tuskiri.pdf/1e38e3be-b413-41f8-b8c0-f235d9eebf43 52 Guidelines for environmental impact assessment and recommendations regarding requirements for the con- struction of wind power plants Available at: https://www.vpvb.gov.lv/lv/media/827/download 53 Guidelines for initial environmental impact assessment for the construction of wind power plants Available at: https://www.vvd.gov.lv/lv/jaunums/izstradatas-vadlinijas-veja-parku-ietekmes-uz-vidi-sakotnejo- izvertejumu-veiksanai
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
154
- assessment of potential supply routes for stations;
- identification of visual impact (visibility) zones, supplemented by a map of visual impact zones, photomontages and working models, prepared by the EIA contrac- tor, showing the actual scale of the proposed activity, to get a full picture of the expected changes. The locations of the specific viewpoints to be modelled were selected on the basis of a field survey and taking into account nearby significant open viewpoints and other visually significant view areas.
The photomontages are prepared using the WindPRO 3.5 visual modelling software, in which the images are prepared with 3D modelling solutions, taking into account the surface and vegetation height of the study area in relation to the starting point of a given view, projecting the planned WTGs on their real scale. Before taking the photographs used for the photomon- tages, a feasibility study of the site is carried out, modelling the theoretical visual impact zones. The map of visual impact zones is created using spatial data, such as topography, veg- etation, of the area in question, which are mapped against the dimensions and layout of the proposed WTGs, thus providing data on the extent of the visual impact of the proposed facility.
As no specific WTG model has been selected at this stage, but several suitable for the site are being evaluated, the WTG model Vestas V172 has been used for the photomontages. The sta- tion has an approximate height of 250 m and is made up of a 166 m high mast supporting a rotor with a diameter of 172 m. However, the possibility of using stations with smaller dimen- sions cannot be excluded. Generators are spaced with a minimum distance of 650 m between them.
Landscape impact assessment approach in Estonia
The assessment is based on the valued landscapes methodology54, the Mulgi municipality master plan55, the methodology for assessing visual changes caused by the construction of wind farms56, the field experience, the work and the visualisations prepared by the client dur- ing the environmental impact assessment process.
Landscape values are determined on a three-point scale:
- low or unclear;
- medium or uneven;
- high.
Valued landscapes are defined by the following five types of value:
- cultural and historical value;
- aesthetic value;
54 K. Hellström, H. Alumäe, A.Palo, H. Palang, K. Sepp, A.Koppelmaa. 2001. Väärtuslike maastike määratlemine. Metoodika ja kogemused. Hiiumaa-Tartu-Viljandi. 55 https://mulgivald.ee/documents/18442398/21825375/Lisa+12.+Abja+valla+%C3%BCldplaneeringu+sele- tuskiri.pdf/1e38e3be-b413-41f8-b8c0-f235d9eebf43 56 A. Tara. 2022. DVC as a Supplement to ZVI: Mapping Degree of Visible Change for Wind Farms. https://www.re- searchgate.net/publication/362429091_DVC_as_a_Supplement_to_ZVI_Mapping_Degree_of_Visi- ble_Change_for_Wind_Farms. Accessed 20 February 2024
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
155
- natural value;
- the value of identity;
- recreational and tourism potential, i.e. recreational value.
The analysis of the impact of the proposed activity on landscapes identifies and assesses the impact on valued landscapes in the potential area of influence.
4.6.2 Description of the current situation
The environmental impact assessment process has considered the landscape areas that could be affected directly or indirectly (visually from a landscape perspective) by the Lode wind farm.
The area of the proposed action is directly bordered by Estonian territory to the east, north and west, and the EIA process is also applicable in Estonia for the development of the wind farm in question.
Assessing the study area in the context of the Latvian cultural canon57, which includes eight canonical landscapes that represent the beauty and diversity of Latvia, it is concluded that the planned activity most directly affects the Latvian forest landscape, as part of the WTG is to be installed in areas that are currently identifiable as forest areas. This in turn means that the areas in question will require deforestation, including clearing of overgrowth. The approxi- mate area to be deforested per station is 1 ha. At the same time, however, the canon does not define a specific boundary or location for the forest landscape, as it characterises the entire Latvian forest landscape as a whole. Therefore, in the given situation it would not be objective to state that the proposed activity will have a significant impact on the Latvian forest land- scape.
Lode wind farm is geographically located in the northern part of Valmiera region, at the border of Estonia, where the contour of the administrative territory of Latvia forms a protrusion. From the north, east and west, the WTGs will therefore have the most direct impact on the Estonian landscape. On the Latvian side, the visual impact can be seen from the south and partly from the west, where the contour of the Estonian territory forms a notch of about 3 to 5 km wide and almost 10 km long in the Latvian contour.
Public roads that are considered to be major transport corridors and also provide visual ac- cessibility to the area of the proposed development are (see Figure 4.6.3):
- national road of local importance V177 (Koņi-Lode-Arakste);
- national road of local importance V176 (Sīļi-Estonian border), which becomes road 201 (Latvian border-Abja-Paluoja) in Estonia and runs along the eastern side of the WTG wind farm. Near the town of Abja-Palojia, the road connects to the higher importance road no. 6 (Valga-Uulu). The road is located approximately four km away and goes along the northern part of the WTG wind farm. On the other hand, as the territory of the WTG wind farm is directly adjacent to the Estonian territory in the west, the primary visual access will be from the Estonian territory – road no.
57 https://kulturaskanons.lv/list/?l=8#landscapes
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
156
203 (Veelikse-Laatre-Latvian border), which crosses the border into the national road V175 (Rūjiena-Estonian border).
Figure 4.6.3. Roads covering the study area of the planned Lode wind farm
The nearest settlement to the area of the proposed development is Arakste, which is less than 1.5 km from the nearest wind farm. The local centres of Lode village and Ipiķi are located less than 5 km and 7.5 km respectively from the proposed WTG site. Rūjiena, the nearest devel- opment centre of the region, is almost 14 km away.
According to the landscape map drawn up by Oļģerts Nikodemus58, based on the geomorpho- logical features of the hinterland and the nature of the landscape cover, the area intended for placement of the Lode wind farm is located in a landscape of forested moraine hills, the south- western part of which is covered by a heavily cultivated landscape of drumlin acres. The area is part of the Ērģemes hills (known as the Sakala highlands in parts of Estonia).
The terrain is characterised by a mosaic, with farmland interspersed with larger and smaller woodlands, sometimes complemented by groups, clusters, rows or avenues of trees. The to- pography is locally characterised as flat, but when viewed on a larger scale, e.g. in cartographic material with an active terrain model layer, the longitudinal undulations that are characteristic
58 Sector review for the development of the Landscape protection district plan: MoEPRD, 2000
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
157
of the drumlin landscape are clearly visible. Further afield, there are some areas of greater variation in the topography, with more extensive lowlands, for example along rivers.
The hills are also characterised by a high degree of biodiversity, and thus landscape diversity, as the interplay of small lowlands and hills provides a variety of hydrological conditions. Wet- ter areas form at lower elevations, which in this particular situation have developed as marshes. However, the slopes and changing conditions are a constraint on agricultural devel- opment, and much of the area is forested. In general, the mix of woodland and farmland also provides a variety of views, with open vistas merging into close and sometimes even com- pletely secluded slopes.
The relief is largely homogeneous over a wider area with fine structural features extending as far as the Halliste river in Estonia, where there are marked relief fluctuations. The vegetation cover shows a more homogeneous mix of forest and farmland in Estonia. In contrast, vegeta- tion cover in the area of the proposed action and the adjacent Latvian territory is more frag- mented, with smaller and more intensive intermingling of fields and forests.
Overall, the surrounding landscape is characterised as simple, with a good sense of the char- acter of the area in terms of topography, vegetation and other landscape features. Most of the views are wide and open, limited in some places by forest patches closer to existing roads or by scattered clusters and rows of trees, which provide variation in views. The survey of the area did not reveal any views of particular scenic value, but there are qualitative features in places where the starting point is higher in relation to the surroundings, with more such views on the Estonian side, e.g. on the road 182 (Abja – Paluoja – Vana – Kariste – Kamali).
The WTG wind farm itself is characterised more as a forest area with some larger and smaller patches of farmland and marshland. Both intensive agriculture and forestry can be found here. The intermingling of farmland and woodland also provides a change of view at a local level (within the WTG wind farm): as woodland recedes, the view of the surrounding countryside opens up wide, while as it gets closer to the road, the view is restricted or completely blocked. In some places, solitary or small clumps of trees can be seen in the countryside, which are both biologically and scenically important natural features.
4.6.3 Impact on the landscape during construction of the WTGs
The delivery and installation of the power plant structures will require the construction of new or the reconstruction of existing potential supply routes and the clearing or deforestation of forest land. The clearing of the supply-widened right of way is a temporary disturbance to the forest landscape, where natural or artificial reforestation is possible after the installation of wind turbines. Deforestation at the site of wind farm supply and installation is an irreversible process in the landscape, resulting in openings in the forest landscape that change the spatial structure of the landscape, increasing fragmentation.
When assessing the works to be carried out to clear transport routes for the transport of tur- bine parts, it was found that in Estonia the works are more related to the relocation or tem- porary dismantling of overhead power lines below and the temporary dismantling of existing road infrastructure such as lanterns, road signs. In Latvia, however, most of the work involves cutting or trimming roadside vegetation, including trees, shrubs and bushes, to ensure suffi- ciently wide corridors or adequate radii on bends and curves.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
158
In assessing the significance of landscape impacts, it is concluded that the trajectory of transport route 2 (see Chapter 3.5.5) will have the greatest adverse impact, as it affects a large proportion of valuable and mosaic-like green structure elements such as solitary trees, tree rows and avenues. In addition, it should be noted that the P17 section Endzele-Baloži is also within the ZBR landscape protection zone, so it is particularly important not to carry out any felling works in this section.
The preferred approach is not to correct or remove the vegetation completely in some areas, but to seek solutions for temporary road alignments around existing obstacles, for example by using adjacent agricultural land to construct or install appropriate temporary structures.
4.6.4 Impact on the landscape during operation of the WTGs
With wind farm projects, WTGs will become one of the most important features of the land- scape over a relatively long period of time – up to 25 years. Large wind farms in particular, with more than 15 WTGs, radically transform the character of the landscape space and have a significant impact on the landscape character59.
When assessing the perceptibility of the WTG wind farm and its visual impact on the land- scape, there are two visual aspects to consider: visibility and conspicuity.
Visibility is determined by the geomorphology of the landscape, the character of the land- scape, which also determines the visual impact zones. They can be divided into very high, high, medium, low and negligible.
Visibility is primarily determined by the physiology of human vision – how well an object can be seen and perceived – as well as by specific atmospheric conditions, such as the brightness of sunlight, including meteorological conditions, which directly affect the visual perception in which the objects are integrated. In both cases, the context and structure of the landscape also play an important role.
Based on the already realised field surveys of wind farms, four hypothetical visibility zones can be identified.
- Present visibility zone – WTGs can be seen at close range, allowing details to be seen, and are dominant or even overpowering. Approximate width of the zone – up to 1 km from the WTGs.
- Very good visibility zone – about 2 to 3 km from the WTGs. They are still seen as dominant, but are gradually beginning to be perceived as part of the overall view, allowing an appreciation of their proportion and scale, as well as their visual inter- action with other landscape elements. In the case of WTGs, it should be noted that areas of presence and high visibility need to be assessed locally in the context of nearby farmsteads, more densely populated areas and sites of cultural and historic interest.
- Good visibility zone is 3 to 7 km away and the WTG become a visual element of the landscape, embedded in the overall landscape, because as the length of the line of sight increases, so does the amount of visual information in the landscape space, making it less likely that the view will focus on one particular thing for a long time.
59 Scottish Natural Heritage, 2009. Siting and designing windfarms in the landscape. Version 1.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
159
- Low visibility zone is approximately 7–12 km from the WTGs. At maximum dis- tance, WTGs can only be seen at longer distances, and this is largely influenced by meteorological conditions and the overall visibility of the landscape. At this dis- tance, prior knowledge of the area and its features is also important, i.e. if a person is looking around with the intention of finding something specific, they will notice it more quickly, but if the feature is a surprise, they are more likely to notice it at this distance if they are looking frontally.
Given the possible dimensions of the WTGs, it is possible that the visibility in some areas may exceed 12 km, but in this case it will be very small. There are also certain aspects to this visi- bility, such as the landscape should be as flat as possible, open, free from other landscape elements that allow for very distant sight lines. It should be borne in mind that any landscape, especially from roads, is mostly perceived as moving rather than static, so the view that emerges is variable and harder to focus on one particular element.
The assessment of the visual impact zones for the planned Lode wind farm concludes that the greatest impact is to the east and west, with high visual impact 5 to 6 km from the WTGs, and low visual impact to the north and south at a radius of 5 km.
With regard to the visibility of the WTGs, it should be noted how, in the specific case where the site itself or its edge is not crossed by roads of public importance, the significance of visual visibility becomes secondary. In turn, the mix of different elements in the landscape makes it much easier to incorporate new elements, as the variety of topography and vegetation struc- ture ensures a constantly changing view.
In assessing the viewpoints from which to model photomontages for assessing the significance of the proposed action, the most important viewpoints are those with a starting point in areas of high and medium visual impact and providing good views from visually scenic areas and nearby settlements. Figure 4.6.4 shows the visual impact zones and selected photomontage viewpoints of the proposed Lode wind farm.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
160
Figure 4.6.4. Visual impact zones and evaluated photomontage viewpoints of the planned Lode wind farm.
See Annex 8 for photomontages showing the visual changes caused by the proposed WTGs.
Viewpoint locations of simu- lated photomontages
WTG location
Cultural monuments
Cultural monument protection zones (Latvia)
Negligible
Low
Medium
High
Very high
Visual impact zone
Legend
* The map is linked to the Latvian coordinate system (LKS‘92) in the TM projec- tion. The digital map JS Baltija prepared by Jāņa sēta, SIA was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
161
The visual impact of the photomontage and the proposed operation as a whole is assessed, and it is concluded that the diverse vegetation structure acts as a visual limiting factor and often even completely obscures the view of the WTGs. However, where the viewpoint is higher in relation to the area of the proposed development and offers extensive panoramic views, the distance to them is sufficient to avoid them being perceived as a dominant element.
The sparse network of public roads in Latvia also reduces visual accessibility, which is an im- portant criterion for assessing landscape quality. Also, the relatively sparse rural development (farmsteads) reduces conflicts for the assessment of visual impacts on residential buildings and nearby villages. The situation is different on the Estonian side, where the density of de- velopment is higher in the adjacent area.
In assessing the proposed development, it can be concluded that it will have a clear visual impact on the landscape of the area.
4.6.5 Description of the existing situation and expected impacts in Estonia
The study area covers the Halliste river valley with a relatively flat and undulating agricultural landscape bordering it from Abja to Karksi-Nui. Historically, this was a typical area of extensive farmland, with only the valley of the Halliste river, whose slopes were mostly overgrown or wooded, and open floodplain meadows were observed on Abja side. There are also older woodlands and belts in the Halliste valley and on the valley slopes. There have been several manor houses (Abja, Pornuse, Pöogle and Kaubi). In general, the territory was dominated by scattered farmsteads and individual villages – Allaste, Leeli, Univere and Mäkiste.
Today, the rural character of the area has been preserved. Agricultural areas are still used, but to a lesser extent and some are overgrown. In the 1960s and 1970s, agricultural areas were extensively reclaimed, losing their structure and the groves between them, as well as some farmsteads. The road network north of the Halliste valley is well preserved, while the Karksi- Nuia-Abja road was straightened and renovated in the early 2000s. In places, spruce hedges and groups of trees still remain along the roadside.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
162
Figure 4.6.16. Valuable landscapes in the vicinity of the planned wind farm (wind farm in the middle of the red oval)
The Halliste river valley between the Abaja and Karksi-Nuia villages, which is a landscape of regional importance (with potential national significance) (see Figure 4.6.16, item 1)
The landscapes of the former manor houses, where the outlines of their territories and par- tially preserved manor buildings can be seen, as well as farmsteads, are of high cultural and historical value in the landscape.
The extensive views over the Halliste valley and from the roads to the immediate surroundings are of high aesthetic value.
The natural values are represented by various elements in the landscape: the valley of the Halliste river with floodplain meadows, some of which are overgrown, and the forest masses and small clusters of trees.
The recreational value of the site is medium, mainly due to the views from the roads. However, due to the poor condition of the historic manor houses, they are not attractive recreational destinations.
Overall, the proposed wind farm will have little or no impact on the northern part of the Hal- liste valley.
Significant landscape changes are expected to the south of the Valga–Uulu road no. 3, where the wind turbines will be clearly visible from the road. However, these impacts are not con- sidered to be very negative, as the landscape has already been changing over time and is not considered to be historically significant. See Annex 9 for visualisations.
Negligible
Low
Medium
High
Very high
National border
Visual impact zone
Area of valuable landscapes
Area of nationally im- portant landscape value
Areas of regional and lo- cal landscape value
Legend
Survey area
Area of valuable landscapes
No. Name
5 Valuable landscape area along the Abja-Paluoja Latvian border road
4 Landscape conservation area around Kangru village
3 Valuable landscape area in the Halliste river valley from Saapa village to Kariste lake
1 Halliste river valley landscape between the Abaya and Karksi-Nuia villages
2 Valuable landscape area in the vicinity of the Majori farmstead
6 Valuable landscape area around the Lilli and Ruhijervi villages
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
163
Homesteads (Majori homestead) landscape, which is a landscape of local (municipal) im- portance (see Figure 4.6.16, item 2). It is located approximately 10 km to the east of the pro- posed area of operation.
Majori farmstead is located approximately 5 to 6 km southwest of Karksi-Nuia, on the western edge of the Saaretse marsh, at the highest elevation of the surrounding area. The farm has been restored and covers an area of about 20 ha, which are tended in the traditional way. The farm is surrounded by diverse, mostly swampy forests, with some swamps where peat extrac- tion was carried out in the 1950s.
The high cultural and historic value of this landscape is due to its preservation in good condi- tion, as some of the buildings are over 200 years old. The old military road, built on logs, passes through the Saaretse marshes.
Its high aesthetic value is due to its beautiful, well-maintained, traditional farmhouse, situated in a beautiful natural area with varying topography.
The identity value of the homestead is medium, as it is recognisable outside the Mulgi district. The recreational value of the area is medium, mainly consisting of hiking trails and ecotourism, which is not very extensive.
The impact of the proposed action is low or negligible, as the farmstead is located in the mid- dle of a forest where the WTGs will be practically invisible.
Valuable landscape of local importance in the Halliste river valley from Saapaküla village to Kariste lake (see Figure 4.6.16, item 3) (the area is located approximately 5.5 km from the wind farm to the north and northeast)
The area includes the Halliste river valley and the farmsteads and settlements north of it (vil- lages: Päigiste küla, Saapaküla, Vana-Kariste). The Vana-Kariste Manor and the dam on Kariste lake are also located in the area. The north of the area is a vast agricultural landscape with undulating topography, the south is the valley of the Halliste river surrounded by forests. Ka- riste lake is also mostly surrounded by forest.
Only one building of the side part of the Vana-Kariste manor complex has been preserved. The manor grounds offer a view (one of the few) of Vana-Kariste lake. The view is spoilt by the Soviet-era collective farm barn next to the manor house.
The former Liplapi school of housekeeping (1910–27) is situated on the side of the Uue-Kariste road and has park-like grounds with deciduous plantations.
The average heritage value of the area is mainly due to the well-preserved rural structure and additional management, as well as the well-defined road network. The landscape is of me- dium aesthetic value, with extensive views, including from the Vana-Kariste estate to the lake. The recreational value of the landscape is also medium, mainly due to the recreational oppor- tunities offered by the guesthouses in the northern part of Kariste lake.
The visual impact of the proposed wind farm is low or insignificant. In the area of scenic vistas, WTGs become visible in the background, but their effect is not dominant. The landscape val- ues are not affected by the proposed wind farm as they are quite site specific and not related to the historically preserved panoramic view. See Annex 9 for visualisations.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
164
Kangru village, located approximately 3.3 km northwest of the proposed wind farm (Figure 4.6.16, item 4)
Kangru village is a valuable landscape conservation area located along the Veelikse – Laatre – Latvian border road. Kangru village is part of Veelikse village. Farms are clustered along the roadside, with a variety of roadside planting. Farmland is managed and maintained. The main scenic assets of the site are the small water body and the small dam, the Laatre railway station building, which is also an architectural monument.
The Valga – Uulu road towards the Latvian border offers scenic views of the varied landscape, long and open viewing areas, large trees standing alone, and stands of trees and ornamental shrubs along the road. The landscape is accentuated by farmsteads of different periods. At the same time, a 330 kV high-voltage power line crosses the view.
The visual impact of the proposed wind farm is low, as the landscape is wide open. WTGs will be highly visible and will increasingly stand out in the landscape when approaching the Latvian border. At the same time, the distance between WTGs is more than three kilometres, and they do not have a dominant effect. The planned wind farm will not affect or diminish the value of the valued landscape. See Annex 9 for visualisations.
Penuja, Abja – Paluoja – Latvian border road, located approximately 2 km east of the proposed activity area (see Figure 4.6.16, item 5)
Penuja is a valuable landscape area along the road Abja – Paluoja – Latvian border. The road is not designated as a scenic road, although the views from the road are considered by the expert to be of value. These include views of the village with the ruins of the church and for- mer school buildings, diverse roadside planting near farmsteads, and both managed and aban- doned farmland. It is partly designated as a valuable built-up area in the Abja parish master- plan (2008).
From the road, the landscape offers a mix of very well-kept farms (Kaidiaia, Känsi), old and poorly maintained, recently-built households and partially dilapidated buildings. These build- ings are from more than one period. Power lines, a substation and small solar farms can also be seen from the road.
The Lode wind farm is to the west of the road, where the terrain is more wooded. The open views are more on the east side of the road. Around the village of Penujas, there are more views of the wind farm, and the WTGs will be clearly visible. The nearest WTG is about 1.3 km from residential development.
The visual impact of the planned wind farm in the Penujas village and the western part of Sate village is significant due to the short distance. The construction of the wind farm will result in a reduction of the natural aesthetic value of the landscape. The section of road and the village of Penujas described above are not of heritage value, but contain buildings from different eras. In addition, it has a well-maintained landscape with future potential. Penujas village, its sur- roundings and built environment have changed over time and are likely to continue to change in the future regardless of the construction of the Lode wind farm. From a landscaping point of view, the wind farm is acceptable. See Annex 9 for visualisations.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
165
The Lilli-Ruhijärve landscape, located approximately 10 km southeast of the wind farm (see Figure 4.6.16, item 6).
During the 2015 inventory, the Lilli-Ruhijärvi landscape was included in the list of category II landscape conservation areas. The area includes the villages of Lilli, Pera (Peraküla), Ruhijärvi and the Teringi Landscape Conservation Area. The terrain is hilly and variable, crossed by the valley of the Lilli river. The elevations are dominated by both agricultural land and woodland. The lower areas, including around Ruhijärvi, are mostly forest. The road through Lilli (Viljandi – Karksi – Ruhja) is probably very old, having been used as a military road by the Knights of the Order in the 13th century and for transporting goods to the Riga market in the 19th cen- tury. In the last assessment, the scenic value of the site has been reduced, mainly due to the newly built road to Lilli village.
The visual impact of the proposed activity on the area is medium and sometimes low. The landscape values are not affected by the proposed wind farm, as they are quite site specific and not associated with a historically preserved panoramic view. See Annex 9 for visualisa- tions.
Overall, the expert considers that the impact of the proposed activity is negligible, although the surrounding landscape will undoubtedly change, particularly in areas closer to the pro- posed wind farm.
4.6.6 Cumulative impact on the landscape
Given the importance of alternative energy, planned wind farms should not only be consid- ered within the sphere of influence, but also in relation to adjacent and planned wind farm developments. This would help to identify areas of conflict early on and find solutions to avoid degradation of the visual quality of the wider landscape.
The Saarde wind farm is located approximately 10 km northwest of the proposed area of op- eration (Estonia) and another wind farm, Saarde II, is planned for a total of 18 wind turbines with a total height of 230 m. On the eastern side, possible areas for the development of two new WTG wind farms have been identified.
In Latvia, the Aloja wind farm is planned to the southwest, about 25 km away from the planned WTG wind farms for which EIAs are currently underway. It is planned to accommodate up to 31 stations with a maximum height of 250 m. In the same vicinity, the EIA process has started for another wind farm Matīši, where eight WTGs are to be installed as originally planned, with a height of 261 m. The proposed wind farm is approximately 30 km from the area of the pro- posed activity.
Two wind farms of SIA Latvijas vēja parki are planned about 50 km away: the Valmiera-Valka wind farm in the southeastern direction with 60 planned WTG, and the Limbaži wind farm in the southwestern direction with 20 planned WTGs. In both wind farms, WTGs with a maxi- mum height of 300 m are planned during the EIA process.
Information on these planned wind farms is summarised in Figure 4.6.17.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
166
Figure 4.6.17. Existing and planned wind farms in the vicinity of the Lode WTG wind farm.
Assessing the current situation and based on the distances of the visibility zones, the cumula- tive effect could result in visual congestion between Lode wind farm and the two Saarde wind farms in Estonia, as there is a good overlap of the visibility zones. However, as the visual impact map shows that the Lode WTG wind farm has a low visual impact on the surrounding area already at a distance of 6 km, the overlap of visibility zones is not considered significant.
4.6.7 Mitigation measures
To reduce the impact of the proposed Lode wind farm on the visual quality of the landscape and to ensure the integration of the wind farm into the existing landscape, the following mit- igation proposals are made:
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija pre-
pared by SIA Jāņa sēta was used as a base.
Legend
Planned location of Lode WTG
Planned location of Saarde WTG
Location of Saarde WTG Wind farms planned, EIA process launched Thematic planning areas of the wind farm development
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
167
1) Reducing the sight distance and visual impact of wind farms on the perception, char- acter and value of the landscape as a resource requires a strong focus on the colour of wind farms. It is recommended to paint the tower and rotor wings of wind turbines white, as this makes the turbines blend in better from the ground, while making them bright enough to be easily seen by pilots in the air. The white colour also reflects sun- light, preventing the equipment from overheating.
2) To reduce the impact of wind turbine signal lighting on the landscape in the evening and at night, it is recommended to use one colour of lighting.
3) In forest lands and roadsides where deforestation is to be carried out for the transport and assembly of power plant structures, artificial reforestation is recommended to re- duce the direct impact of the WTG structures on close-up views.
4) Considering that there are a number of valuable trees in the area of the proposed development, ensure the protection of these trees, both by not locating WTGs in their immediate vicinity and by engaging a certified arborist during the design and construc- tion phase to provide guidance on mitigation measures for the proposed development. A certified arborist should also be involved if it has been decided to reduce the canopy of individual trees or groups of trees.
5) When planning delivery routes, it is important to choose delivery routes that eliminate the need for extensive roadside clearance for the delivery of bulky elements of the WTGs. Temporary diversion routes should be created where possible to minimise the potential felling or cutting of trees, groups of trees, rows or avenues.
4.6.8 Comparison of alternatives
The parameters of the technological alternatives assessed in the EIA process are equivalent and in the context of landscape protection the technological alternatives are assessed as equivalent and there is no reason to define any of the assessed WTG models as better than the others. To mitigate the impact of WTGs on the visual quality of the landscape and to en- sure the integration of the wind farm into the existing landscape, the expert has made recom- mendations for mitigation.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
168
4.7 Cultural heritage
This chapter analyses the potential impact of the proposed wind farm on archaeological and cultural heritage. It provides a detailed overview of the proposed activity and the area af- fected, considering possible implications and options for the conservation and protection of the cultural heritage.
4.7.1 Regulatory framework and impact assessment approach
During the design and construction of wind farms, acts and regulations designed to preserve cultural heritage must be taken into account. The European Convention for the Protection of the Archaeological Heritage, adopted in Valletta on 16 January 1992 and in force in Latvia since 19 June 2003 by the act on the protection of the archaeological heritage, applies to this area. Also relevant in the context of the project is the Latvian act on protection of cultural monu- ments (in force since 11 March 1992, as amended until 31 March 2022). Section 22 of the act on the protection of cultural monuments states that before commencing construction, land amelioration, road construction, extraction of mineral resources, and other economic activity the commissioning party thereof must ensure surveying of cultural values in the area of in- tended activity. Natural persons and legal persons who as a result of economic activity dis- cover archaeological or other objects with cultural and historical value must immediately no- tify the National Heritage Board (NHB) thereof, and further activity must be suspended. On the basis of this act, on 26 December 2021 cabinet regulation no. 720 was issued, on the record-keeping, protection, inventory and restoration of cultural monuments was issued. It entered into force on 1 January 2022. According to article 32 of this regulation, having re- ceived a notification from a natural or legal person who has discovered an object of cultural heritage value in the course of construction or other works, the NHB must, within one month, organise the identification of the discovered object, ascertain its cultural heritage value and determine measures for its conservation. According to section 38, clause 1 of the act on pro- tected zones (adopted 5 February 1997, in force from 11 March 1997), economic activity in the protection zones (protection strips) around cultural monuments may only be performed with a permit from the State Inspection for Heritage Protection and the owner of the cultural monument.
To identify and assess the cultural and historical values in and around the wind farm study area, information available from public information sources, collections and elsewhere has been summarised.
4.7.2 Description of the existing situation and assessment of impacts
The planned wind farm will be located on a narrow strip of land in Lode, in Vidzeme munici- pality. In ancient times, the territory of the parish of Lode was also sparsely populated, as it was located on the southern periphery of the ancient Estonian lands of Sakala and on the northern periphery of the ancient Latgalian lands of Talava. The development of the frontier settlement was also hampered by conflict. Arakstes Manor was built at the beginning of the 15th century. Lode was first mentioned in written sources at the beginning of the 16th century. The population was moderately dense until the Second World War, with fewer forests and more farmland.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
169
Figure 4.7.1. The location of WTGs and the state-protected cultural heritage in the vicinity of the planned wind farm.
According to the map of cultural monuments on the NHB website, in the immediate vicinity of the planned wind farm there is one state-protected cultural monument: Urgu Swedish Stone with inscriptions and signs, which is a cultural monument of regional importance – Ar- chaeological Monument No 2458.
The Urgu Swedish Stone is located on the Latvian-Estonian border, but a few metres away in Latvia. The stone is 3.9 m long, 2.5 m wide and 1.3 m high. Carved into the stone are the numbers 301 and 1800, a cross and a triangular sign. The different carving techniques suggest that they were carved at different times. Tales and stories date back to the Swedish War. The stone is said to have served as a seat for the King of Sweden. The stone is said to have floated down the Zviedru river, which was formed from the blood of Swedish soldiers. The Swedish war chest or the king’s golden sword are said to be buried under the stone. It is also said that the spring that flows from the bottom of the stone is formed from the tears of the oppressed people, which is why the stone is also called the Stone of Tears. It is not possible to determine the real meaning of the Urgu Swedish Stone from the folklore, but it is possible to estimate that it had some connection with wars or battles or other violent events. Today, it serves as a boundary stone.
The protection zone of the Urgu Swedish Stone is 500 m. The planned WTG L_03 will be lo- cated within the monument protection zone at a distance of approximately 400 m from the stone. As the cable communications of the wind turbine are to be laid to the southeast, i.e. on the opposite side of the stone, the construction and operation of this WTG will not pose a threat to the Urgu Swedish Stone.
Urgu Swedish Stone with inscriptions and
signs
Arakstes Manor stables
Arakstes Manor barn
Medieval cemetery of
Ķirbele
Medieval cemetery of
Veckābuļi
Legend
Monument of cultural and historical importance
Monument protection zone Wind turbine location
Planned cable route
Access road
Construction site
Substation
Survey area
National border
The map is referenced to the Latvian coordinate system (LKS- 92) in TM projection. The digital map JS Baltija prepared by
SIA Jāņa sēta was used as a base.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
170
Figure 4.7.2. On the left is Urgu Swedish Stone (NHB); on the right is Urgu Swedish Stone (Urtāns, 1990)
To the south of the proposed wind farm is Arakstes Manor. The Arakstes Manor complex was formed in the first half of the 19th century, when a manor house, a servants’ house, stables, a barn, a cattleshed and a forge were built there. In 1881, a cellar and other outbuildings were built. The manor house was built as a one-storey brick building with a gabled roof and a high plinth. In the second half of the 19th century, a two-storey block was added to the house. The main facade had a porch with a four-columned portico. After the estates were expropriated in 1922, a school was arranged in the building, and after the Second World War there was a club.
Two buildings in the manor house complex are under national protection as a cultural monu- ment of regional importance – the manor barn (protection no. 6904, see Figure 4.7.3) and the manor stables (protection no. 6905, see Figure 4.7.4). Both buildings date from the first half of the 19th century. The manor complex is currently in a poor state of preservation.
There is a “Love stone” in Arakstes Manor park on the right bank of the Arakstes river. It is 4.7 m long, 2.7 m wide and 2.5 m high. The stone has steep sides, a flat and level surface, and at least ten people can stand on it at the same time. A copper bell is said to be under the stone 60.
60 NHB PDC inv. no. p. 1490 I, p. 1558 I
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
171
Figure 4.7.3. Arakstes Manor barn (NHB) Figure 4.7.4. Arakstes Manor stables (NHB)
The buildings under national protection and the “Love stone” are located approximately 2 km from the nearest WTG L_19, L_17 and L_16, and therefore the construction of these wind turbines and associated communications will not pose any threat to these heritage values.
About 4 to 5 km from the WTG there is another archaeological monument – Kalnalammiki settlement and Upurakmens – a cult site (cultural monument of regional importance in the parish of Lode in the municipality of Valmiera near Kalnalammiki, protection no. 2456). This site will also not be endangered by the construction of the wind farm.
The route of the wind farm’s electricity cables is planned to be about 1.4 km from the medieval cemetery of Ķirbele (a cultural monument (archaeological monument) of regional importance in the parish of Ipiķi of the municipality of Valmiera, protection no. 2436) and about 2 km from the medieval cemetery of Veckābuļi (a cultural monument (archaeological monument) of re- gional importance in the parish of Ipiķi in the municipality of Valmiera, protection no. 2437). These medieval cemeteries will not be threatened by the planned cable routes.
In addition to the currently known and state- protected cultural monuments, there is infor- mation on other sites of possible cultural and historical significance in and around the area of the planned wind farm.
The monument documentation centre of the National Heritage Board (Nacionālā kultūras mantojuma pārvaldes Pieminekļu dokumentāci- jas centrs, NKMP PDC) published a report in 1985 on the Swedish Road running from north to south between the Urga and Bērzu houses. The road site is marked as an elevation. The site is not precisely located in nature, but could coin- cide with the cable routes between WTGs L01, L_02, L_03, L_04, L_05 and L_07 (NHB PDC inv.No 23056/5435-2 I).
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
172
Figure 4.7.5. Possible fragment of the Swedish road between Urga and Bērzu houses (NHB PDC inv.Nr.23056/5435-2 I).
About 0.8 km southwest of the Urgu Swedish Stone is a group of hills called Ūskalns. There are indications that tales and legends have also been told about the site (Urtāns, 1990–40). The expert suggests that Ūskalns, rising above the generally low and marshy surrounding area, may have played a historically significant role (settlement, burial site).
Figure 4.7.6. Ūskalns (available online at kartes.lgia.gov.lv)
Figure 4.7.7. Penannular brooch from the de- stroyed medieval cemetery of Lode (LNVM AD
inv. No. A 12746:1)
There is no evidence of medieval or modern cemeteries in the northern part of the parish of Lode, where the wind turbines are planned to be built. However, given that there are several medieval burial sites to the south of Arakstes Manor, the possibility that there was a small local cemetery in this part cannot be ruled out. So far, the nearest medieval cemetery to the planned wind farm is known to be in the area of Arakstes Manor near the Grantskalnu houses. The cemetery was destroyed by the opening of a gravel quarry in the 1980s. The medieval cemetery at the Lode village mill (Smilškalni) was similarly destroyed. A small penannular brooch and three 16th-century cemeteries from the graves are in the collection of the LNVM AD. There are also reports of human bones being found at the Kalniņi houses south of Lode. The Swedish cemetery, where human bones were found around 1935 during construction of the post office, is in the village of Lode, which is near Podnieki. There are also records of an ancient tomb and church site at Žagatas, about 2 km south of Arakste. The site of the church and the cemetery at Labrenči (currently about 1.3 km southwest of Arakste, in the vicinity of the Akmengravi houses) are also mentioned in the visitation protocols.
These sites, if preserved, are not threatened by the planned construction of the Lode wind farm. However, the high concentration of burial sites to the south of Arakstes Manor indicates that, similarly, the areas to the north of Arakstes Manor, where the wind farm is planned, may contain hitherto unknown cemeteries. In the 17th and 18th centuries, peasants living far from official cemeteries often secretly buried their dead in unconsecrated places. This was more often the case in epidemics of plague and other diseases.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
173
4.7.3 Impacts on heritage assets, and mitigation measures
According to expert opinion, the implementation of the proposed activity does not pose a threat to the state-protected cultural monument Urgu Swedish stone, the buildings of Arakstes Manor, the medieval cemetery of Ķirbele or the medieval cemetery of Veckābuļi.
When constructing the wind farm communications and fencing, if planned, free access to cul- tural monuments in and around the wind farm must be ensured.
As there are various reports and artefacts suggesting several medieval burial sites to the south of Arakstes Manor, it is possible that some as-yet unknown illegal medieval burial sites could also exist to the north of Arakste in the area of the planned wind farm. Therefore, prior to the construction of the wind farm (after the topsoil has been removed), the wind farm area should be surveyed by an archaeologist to check for archaeological sites in the areas where the wind turbines and utilities are to be built. It should be observed that according to article 32 of cab- inet regulation no. 720, if objects of cultural and historical value are discovered, including dur- ing construction, the works must be stopped and the findings must be reported to the Na- tional Cultural Heritage Board (NKMP).
There are currently no reports of battles or burial sites in the area of the planned wind farm. However, during both the First World War (1914–1918) and the War of Independence (1918– 1920), armies moved and clashed in the area. This is also evidenced by the monuments and memorial plaques in the municipality of Rūjiena to the members of the parish of Rūjiena who died in these wars. The inhabitants of the parish of Lode belonged to the Rūjiena parish churches. During the Second World War (1939–1945), in 1941 and 1944 troops crossed the border parishes of Latvia and Estonia. If graves of soldiers are found during excavation work, it is important to notify the police and the soldiers’ cemetery association (Brāļu kapu komiteja) ([email protected]).
Any explosive hazards that are found should be reported to the nearest state police office (tel. 110), before cordoning off the area where they were found.
All of the above requirements also apply to the planned cable trenching sites in the parish of Ipiķi.
4.7.4 Evaluation of alternatives
Given that all the technological alternatives evaluated are considered to be similar in the con- text of factors that may affect the protection of heritage assets, there is currently no reason to consider any of the wind turbine generator (WTG) models that have been evaluated as being superior to the others. To mitigate potential impacts on heritage assets, the expert has provided guidance to be taken into account when undertaking the construction of the pro- posed wind farm.
4.8 Air quality
The analysis of the processes to be carried out during the construction and operation of the planned Lode wind farm has shown that potentially significant emissions of air pollutants are associated with the processes planned for the construction phase of the wind farm, while no significant sources of emissions can be identified during the operation period. Accordingly, this assessment involves an analysis of the potential emissions of dust, PM10 particles, PM2.5
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
174
particles and nitrogen dioxide during construction activities and from the movement of con- struction vehicles through the area of the proposed activity and transport routes.
The potential changes in air quality during the construction phase of the proposed wind farm are expected to occur only in the territory of Latvia and no transboundary impacts are fore- seeable. Therefore, this chapter assesses changes in air quality and compliance with air quality threshold values in accordance with Latvian regulatory enactments.
4.8.1 Legislative framework
For PM10 particles, PM2.5 particles and nitrogen dioxide (NO2), air quality limit values – the scientifically based pollution levels are set to prevent, avoid or reduce harmful effects of pol- lution on human health or the environment. The corresponding threshold values have been used to assess the existing pollution levels in the study area and the sensitivity of the site to a short-term potential increase in pollution levels during the construction phase.
Information on the concentration limit values for pollutants is provided in Table 4.7.1 in ac- cordance with cabinet regulation no. 1290 of 3 November 2009, on air quality.
Table 4.8.1. Air quality standards
Pollutant Determination period Threshold
PM10 particles Calendar year 40 µg/m3
PM10 particles 24 hours 50 µg/m3 (not to be exceeded more than 35 times per calendar year)
PM2.5 particles Calendar year 20 µg/m3
Nitrogen dioxide 1 hour 200 µg/m3 ( not to be exceeded more than 18 times per calendar year)
Nitrogen dioxide Calendar year 40 µg/m3
In addition, the potential for dust generation from construction activities has also been as- sessed. Dust pollution is considered a disturbance because the short-term and long-term ef- fects on human health are attributable only to PM10 particles and PM2.5 particles available in dust, known as respirable particles, which can enter the thoracic part of the respiratory sys- tem61. Air quality standards for the relevant dust fractions are set out in Table 4.8.1 and are assessed separately. Dust disturbance is expressed as visual seen dust clouds and dust depos- its on surfaces.
4.8.2 Existing air quality
The assessment of the existing air quality has been prepared using the data on the existing pollution levels in the vicinity of the study area provided by the Latvian Environment, Geology and Meteorology Centre (LVGMC) in its letter no. 4–6/246 of 26 February 2024. The statement
61 Effects of suspended particulate matter, published by the Health Inspectorate (available in Latvian at https://www.vi.gov.lv/lv/suspendeto-cieto-dalinu-ie- tekme?utm_source=https%3A%2F%2Fwww.google.com%2F)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
175
provided by the LVGMC is attached as Annex 11, and the following figures provide a descrip- tion of the spatial dispersion of the pollution.
As can be seen from the figures, air pollution concentrations in the vicinity of the proposed activity are low and do not exceed the limit values set by the cabinet. Moreover, for all pollu- tants, the concentrations reported by the LVGMC are lower than the lower pollution assess- ment threshold (65% of the annual limit value for nitrogen oxide and 50% of the annual limit value for particulate matter, respectively). This means that the existing air quality in the study area is good and there is no need to plan measures to improve air quality. As the spatial dis- persion of pollution shows, the highest concentrations of pollution sources are observed in the vicinity of two national local roads V176 Sīļi-Estonian border and V177 Ķoņi-Lode-Arakste, which are related to road traffic. Another potential source of pollution is peat extraction in the Kongsi bog in Estonia. As information on emissions from peat extraction is not available, this is not taken into account in the assessment below, as in any case the impact on air quality from peat extraction is assessed as significant only in the immediate vicinity of the source and does not affect potential WTG sites, while mineral transport does not occur in the area of influence of the proposed activity.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
176
Figure 4.8.1. Annual mean concentration of PM10 particles - the current pollution level
The map is referenced to the Latvian coordi- nate system (LKS-92) in TM projection. The
topographic map prepared by the Latvian Geo- spatial Information Agency (LGIA) at a scale of
1:50 000 was used as a base.
Legends
Location of wind power plants
PM10 concentration µg/m3
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
177
Figure 4.8.2. Annual mean concentration of PM2.5 particles – the current pollution level
The map is referenced to the Latvian coordi- nate system (LKS-92) in TM projection. The
topographic map prepared by the Latvian Geo- spatial Information Agency (LGIA) at a scale of
1:50 000 was used as a base.
Legends
Location of wind power plants
PM2.5 concentration µg/m3
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
178
Figure 4.8.3. Annual average concentration of nitrogen dioxide – the current pollution level
The map is referenced to the Latvian coordi- nate system (LKS-92) in TM projection. The
topographic map prepared by the Latvian Geo- spatial Information Agency (LGIA) at a scale of
1:50 000 was used as a base.
Legends
Location of wind power plants
NO2 concentration µg/m3
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
179
4.8.3 Impact assessment approach
The impacts of construction have been assessed using a qualitative approach, as described in the following guidelines for assessing air quality impacts from construction activities:
- Guidance on the assessment of dust from demolition and construction62 (Institute of Air Quality Management (IAQM) guidance),
- Guidelines for the treatment of air quality during the planning and construction of national road schemes63 TII guidelines),
- Sustainability & Environmental Appraisal, LA 105, air quality Design Manual for Roads and Bridges (DMRB) guidelines)64.
The guidelines apply to the assessment of air pollution from construction and demolition ac- tivities.
The main air quality impacts that may arise during construction are:
- visually visible dust clouds;
- dust deposits;
- increased concentrations of PM10 particles from construction activities;
- Increases in concentrations of NO2, PM10 particles and PM2.5 particles due to exhaust emissions from construction machinery and delivery vehicles.
The guidelines take into account the potential for pollution emissions from various dust-gen- erating activities, such as demolition of existing structures, earthworks, new construction and removal of dusty material. Earthworks include soil removal, land levelling, excavation and landscaping, while the removal of dusty material assesses the potential for such material to be deposited on public roads where it accumulates and may re-ascend into the atmosphere as a result of vehicular traffic.
The guidelines address three groups of potential consequences:
- disturbance caused by dust pollution;
- damage to ecosystems;
- impact on human health.
Using the method presented in the IAQM Guidelines, it is possible to classify the significance of the impacts from construction activities by assessing the potential dust load (high, medium or low) together with the existing background pollution levels and the proximity of the site to the nearest recipients. According to the guidelines, where significant impacts are expected appropriate mitigation measures must be implemented. The set of measures reduces the im- pact of air pollution from construction to a negligible level. The method described in the guidelines involves five assessment steps: (1) evaluating the need for the assessment, (2) as- sessing the level of pollution risk, (3) identifying mitigation measures, (4) assessing the signif- icance of the effects, and (5) producing the assessment result.
62 http://iaqm.co.uk/text/guidance/construction-dust-2014.pdf 63 https://www.tii.ie/technical-services/environment/planning/Guidelines-for-the-Treatment-of-Air-Quality- during-the-Planning-and-Construction-of-National-Road-Schemes.pdf 64 https://www.standardsforhighways.co.uk/prod/attachments/10191621-07df-44a3-892e-c1d5c7a28d90?in- line=true
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
180
This approach has been chosen for the assessment of impacts because the number and type of vehicles involved in construction and works, the duration of the works and the travel routes cannot be determined with sufficient confidence at an early stage of the project to allow a detailed assessment of impacts using air pollution dispersion modelling.
The criteria for the need for assessment contained in the guidelines in relation to construction works are summarised in Table 4.8.2.
Table 4.8.2. Assessment necessity criteria
Sensitive recipient Criterion
Residential buildings, schools, hospitals, places of worship, sports centres and shops, i.e. places where members of the public are likely to be reg- ularly
- 350 m from the boundary of the construction site; or
- 50 m from the route(s) of construction vehicles on public roads up to 500 m from the point of entry to the construction site
Protected plant or species habitat, protected bi- otopes
- 50 m from the boundary of the construction site; or
- 50 m from the route(s) of construction vehicles on public roads up to 500 m from the point of entry to the construction site
The DMRB guidelines, in turn, prescribe the assessment criteria for assessing the impacts of road traffic on public roads. According to these guidelines, the impact on air quality from road traffic from construction activities should be assessed if the duration of construction activities exceeds two years. According to the information provided by the proponent, the total time for the construction of the wind farm is expected to be approximately two years (see Chapter 3.5), and hence no further assessment of the air quality impacts of traffic movements on pub- lic roads is made. Also, based on the information provided in Chapter 3.5 on the traffic vol- umes of construction activities, it can be concluded that the annual average daily traffic vol- ume (ADTV) will be less than 1,000 vehicles, while the ADTV of freight vehicles will not exceed 200 vehicles per day, which is assessed as having a negligible effect on air quality in accordance with the DMRB guidelines.
4.8.4 Impact on air quality during construction
Dust pollution from construction work
All construction sites have been assessed and assigned an appropriate level of impact risk based on the scale and nature of the works and the sensitivity of the site to pollution impacts. The level of risk of impact determines the choice of mitigation measures. Risks are assessed qualitatively, with an appropriate risk rating of low, medium or high.
The criteria defined in the IAQM guidelines (see pages 14 to 15 of the guidelines) have been used to assess the amount of dust emissions. The results are summarised in the following tables.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
181
Table 4.8.3 provides a significance rating for the amount of dust likely to be generated by earthworks, construction activities and from the removal of dusty material. The volume is es- timated for one assembly area.
Table 4.8.3. Assessment of dust emissions from construction work
Activity Emission volume significance Substantiation
Earthworks Medium Assembly area 2,500 – 10,000 m2
Construction Low Construction volume < 25,000 m3
Material removal High Length of unpaved roads > 100 m
The sensitivity of an area is assessed by taking into account the distance to the sensitive re- cipient, the number of recipients and the concentration of background pollution. Both the potential disturbance from construction activities (visually observable dust clouds and depo- sition) and the potential impact of PM10 particles on human health are analysed. Having as- sessed the information on the sensitivity of the area to dust disturbance, it has been con- cluded that the potential WTG sites are not in close proximity to human habitation, and there- fore the construction of these plants will not cause disturbance to people living in the vicinity. Potential disturbance could occur on sections of road to be newly built or rebuilt and at po- tential substation construction sites.
In addition to the location of residential dwellings, background pollution levels are also taken into account to assess the sensitivity of the site to potential health effects from pollution (see also Chapter 4.8.2). There are eight sensitive recipients in the area of potential impact from the construction of the wind farm, one within 100 m, four within 200 m and two within 350 m of the boundary of the construction site, including a section of road under construction, and one sensitive recipient within 50 m of the route of vehicles involved in the construction. Taking into account the above and the fact that the level of PM10 particles in the area of influ- ence of the proposed activity does not exceed the lower assessment limit value (< 24 µg/m3), it can be concluded that the construction activities are expected to have a negligible (low) impact on human health.
The information provided in Chapter 4.3 on the natural values of the site and its vicinity, the location of protected habitats and species in and around the area of the proposed activity, and the expert opinion have been used to assess the potential ecological harm. Within a 50- metre radius of the construction vehicle routes on the access roads to the WTGs, two EU hab- itats 9010*_1 Old or natural boreal forest (biotope polygon LVM 2015 and LVN 2017) are lo- cated within 500 m of the infrastructure to be constructed, while within 50 m distance from WTGs L_01, L_03, L_19 assembly sites there are the following EU habitats 9010*_1 Old or natural boreal forest (biotope polygon no. 18SU869_125), 91D0*_1 (biotope polygon No LVM 2018) and 91D0*_3 Swamp forests (biotope polygon No 17TK904_70) 7120_1 Degraded raised bogs with potential or ongoing natural regeneration (biotope polygon No 17TK904_67), as well as a site of Spinulum annotinum (Lycopodium annotinum) up to 50 m from the WTG L_16 assembly site and a habitat of Orobanche pallidiflora at the WTG L_01 assembly site. These habitats of EU importance may be temporarily exposed to dust from construction
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
182
works, which may contribute to a slightly more rapid change in the species composition of the habitats in the exposed part of the habitat. However, the loss of habitats and the impact on the species composition in the other parts of the habitats are not expected; for this reason, the impact of dust from construction works is not identified as a negative anthropogenic factor and this group of potential effects is therefore excluded from further assessment.
The overall level of risk of an impact according to the approach described in the IAQM guide- lines should be determined by considering the interaction of all the factors listed above. Ac- cording to the results of the assessment, it can be concluded that the construction of the stations will have a negligible impact and therefore only non-specific mitigation measures are recommended in planning the construction works.
4.8.5 Mitigation measures
Given that the level of risk of construction effects is assessed as insignificant and no quantifi- able significant effects from vehicular movements on the access roads are expected, non-spe- cific mitigation measures are applicable to the operation and should be implemented. The recommended measures are summarised in Table 4.8.4.
Table 4.8.4. Measures to be implemented during construction to mitigate air quality impacts
Recommended mitigation measures Where and when applica-
ble
Construction management
Record all complaints received about foaming and/or air quality, iden- tify their causes and implement corrective actions
At all construction sites, at all construction phases
Record all emergencies resulting in increased foaming and/or air pol- lution and the actions taken to address the impact
At all construction sites, at all construction phases
Monitoring
Carry out regular inspections of construction sites and assess the im- plementation of anti-foaming measures
At all construction sites, at all construction phases
Organisation of works
Identify and provide sufficient water for the construction site and haul road wetting
Transport routes, at all stages of construction
Machinery involved in construction work
Engines must not be allowed to idle, i.e. they should be switched off when not in operation
At all construction sites, at all construction phases
Transport
Ensuring that road surfaces are wetted or treated with anti-dust ma- terial in the event of complaints from residents about dust nuisance
At all construction sites, at all construction phases
To be implemented for foaming in favourable weather conditions, on gravel roads
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
183
Recommended mitigation measures Where and when applica-
ble
Prioritise the use of asphalted roads for transport, gravel roads only where justified, including where there are no alternative transport routes.
At all construction sites, at all construction phases
4.8.6 Evaluation of alternatives
Given that all the technological alternatives evaluated are considered to be similar in the con- text of factors that may affect air quality, there is currently no reason to consider any of the WTG models under evaluation as superior to the others. To mitigate potential impacts, guid- ance is provided on what to consider when starting construction of the proposed wind farm.
4.9 Climate
Climate change is one of the most complex global challenges faced by society today, as well as the systems that sustain humanity, such as the world’s oceans and terrestrial ecosystems. Climate change is mainly linked to rising levels of greenhouse gases in the atmosphere, which are having an increasing impact on global climate processes. Greenhouse gases (GHGs) from human activities are mainly produced by burning fossil fuels for energy and by the use of fossil fuels in various forms of transport. Significant emissions are also associated with the effects of land-use change, such as emissions from drainage-affected, organic-rich soils (peat soils) and emissions from deforestation for agricultural land. Scientists predict that the frequency of extreme weather events such as storms, extreme precipitation, floods, extreme droughts and hot spells will increase as the climate changes. In addition, climate change trends can put pressure on both natural systems – ecosystems, animals and plants that cannot adapt to a rapidly changing environment – and on economies – causing damage, extra costs or risks of economic loss. Moving away from fossil-fuelled power plants and towards renewable energy sources (RES) is essential to reduce greenhouse gas emissions from human activities and tackle climate change.
4.9.1 International, EU and national climate regulatory frameworks
In the context of international agreements, climate protection targets in Latvia have been set within the framework of the EU Joint Commitment65 to mitigate climate change by 2030, which was made under the Paris Agreement of the United Nations Framework Convention on Climate Change66:
1) Reducing GHG emissions and increasing CO2 sequestration in all sectors;
2) reduce total GHG emissions of all EU member states by at least 40% below 1990 levels by 2030 in a cost-effective way.
The European Union’s climate planning documents anticipate:
- European Commission 2020 communication on increasing the EU zone’s ambitions related to mitigating climate change up to 2030. Investing in a climate-neutral future
65 https://eur-lex.europa.eu/legal-content/LV/TXT/?uri=CELEX:32016D1841 66 https://likumi.lv/ta/lv/starptautiskie-ligumi/id/1730
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
184
for citizens67 – aim for GHG emission reductions of at least 55% by 2030 and climate neutrality by 2050;
- EU roadmap for transforming the EU into a competitive, low-carbon economy by 205068: in order to transition to a competitive low-carbon economy, the EU is ready to reduce its total emissions by 80-95% by 2050 compared to 1990 levels;
- Opinion of the Committee of the Regions — A Clean Planet for all — A European stra- tegic long-term vision for a prosperous, modern, competitive and climate neutral econ- omy69 – The EU is ready to achieve climate neutrality by 2050, which defines a non- zero EU total GHG emissions pathway where overall GHG emissions are fully covered by CO2 sequestration, or no GHG emissions are emitted due to the use of certain tech- nologies;
- Decision of the European Parliament and of the Council of the European Union of 6 April 2022, on a general EU environment action programme for 2030, setting out a general EU environment action programme for the period up to 31 December 2030 (8. Environment Action Programme)70, formulates the priority objective of reducing greenhouse gas emissions rapidly and predictably while increasing removals in natural sinks in the EU in order to achieve the 2030 greenhouse gas emission reduction target set out in Regulation (EU) 2021/1119, in line with the EU climate and environment objectives, and to achieve climate neutrality in the EU by 2050.
To meet the 55% GHG emissions reduction target by 2030, some EU legislation was revised to ensure EU policies are in line with the new climate targets, including by revising the effort- sharing regulation 71 and setting Latvia a target to reduce its non-EU emissions trading system (ETS) GHG emissions by 17% compared to 2005 levels.
European climate policy is closely linked to the renewable energy policy. In May 2022, the REPowerEU plan of the European Commission was adopted72, one of the pillars of which is to significantly increase renewable energy capacity in the EU. REPowerEU sets a binding target of 42.5% renewable energy by 2030, with the aim of increasing the target to 45%.
Latvia currently has a number of policy planning documents on climate change mitigation, which set energy and climate change mitigation targets and also define policies to achieve these targets.
The sustainable development strategy of Latvia until 203073 aims to ensure the country’s en- ergy independence by increasing energy self-sufficiency and integrating into EU energy net- works. The strategy also sets numerical targets for GHG emission reductions, renewable en- ergy sources (RES) and energy intensity, as well as innovation targets for 2030. The target for
67 https://eur-lex.europa.eu/legal-content/LV/TXT/HTML/?uri=CELEX:52020DC0562&from=LV 68 https://eur-lex.europa.eu/legal-content/LV/TXT/PDF/?uri=CELEX:32018R1999&from=LV 69 https://eur-lex.europa.eu/legal-con- tent/LV/TXT/HTML/?uri=CELEX:52018DC0773&qid=1575363669558&from=LV 70 https://eur-lex.europa.eu/legal-content/LV/TXT/HTML/?uri=CELEX:32022D0591&from=EN 71 https://eur-lex.europa.eu/legal-content/LV/TXT/HTML/?uri=CELEX:32023R0857 72 https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu- affordable-secure-and-sustainable-energy-europe_en 73 https://pkc.gov.lv/lv/valsts-attistibas-planosana/latvijas-ilgtspejigas-attistibas-strategija
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
185
the share of energy from renewable sources in total gross final energy consumption for 2030 is set at 50%.
The national development plan of Latvia for the 2021–2027 period 74sets out the task of re- ducing the Latvian economy’s greenhouse gas emissions through climate change mitigation solutions and climate technology breakthroughs, and ensuring increased carbon sequestra- tion towards a climate-resilient economy, targeting high energy efficiency and decarbonising the transport system. The plan sets the target of reducing GHG emissions intensity on a tra- jectory towards the target for 2030: 292 t CO2 eq per EUR million
The national energy and climate plan for the 2021–203075 period forecasts an increase in GHG emission reductions and RES production, with the increase in energy production mainly com- ing from wind farms, but also a small increase in solar electricity production. According to the targets of this plan, the share of electricity generated from RES should reach at least 67% in 2030.
The Latvian climate act is also currently being drafted. The draft climate act was put out to public consideration in October 2023.76 The aim of the act is to ensure climate change mitiga- tion and climate resilience in order to achieve climate neutrality by 2050 at the latest, ensuring the achievement of national climate targets in line with European Union and international commitments, taking into account ecological, social and economic sustainability. The act is based on the Paris Agreement commitments under the United Nations Framework Conven- tion on Climate Change.
4.9.2 Impact assessment approach
A plan has been made for the creation of a capacity of approximately 19 WTG (one WTG is expected to have a rated generation capacity of more than 6 MW) at Lode wind farm.
The climate impacts of the proposed action consist of the direct GHG emissions associated with the construction and operation of the WTG and the GHG emission reductions associated with the substitution of fossil fuel energy production and associated GHG emissions with RES energy.
GHG emissions associated with the development of the WTG wind farm include:
a) Life cycle emissions – GHG emissions related to the manufacture, transport, installa- tion and post-operational dismantling of a wind power plant;
b) GHG emissions and loss of sinks associated with land-use change (deforestation, drain- age of peat or peatland soils, and loss of potential CO2 sinks in deforested areas);
c) Reduction or substitution of GHG emissions.
The life cycle of a wind power plant can be divided into five main phases: (1) extraction of materials, (2) manufacture of major components, (3) installation, (4) operation and mainte- nance, (5) dismantling, recycling and end-of-life disposal. The assessment of each life cycle stage includes the relevant transport activities and energy consumption.
74 https://pkc.gov.lv/lv/nap2027 75 https://www.em.gov.lv/lv/nacionalais-energetikas-un-klimata-plans 76 https://tapportals.mk.gov.lv/structuralizer/data/nodes/d3c99cf3-67bb-455d-b908-7fa182b2d87d/preview
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
186
In addition to the burning of fossil fuels, greenhouse gases are also emitted to the atmosphere through natural processes, from natural sources. These processes occur at different phases, such as during the decomposition of carbon-containing organic compounds. Carbon-contain- ing compounds can accumulate in organic litter in forest ecosystems and in soils in both forest and agricultural areas, and in particularly high concentrations in peat and organic sediments in wetland ecosystems. Accordingly, another potentially significant source of GHG emissions to be assessed in the context of the development of WTG wind farms is emissions related to land-use change, including emissions that may arise from peat soils as a result of their drain- age.
Changes in GHG emissions associated with the land use, land use change and forestry (ZIZIMM) sector should be assessed taking into account the existing distribution of land uses on the site of the proposed activity and the planned land-use change, which involves a trans- formation of land use from forest and agricultural land to built-up areas (WTG sites and roads) (according to the IPCC guidelines). Deforestation of all kinds is one of the most important sources of emissions, which tend to increase with the development of the road network and industrial infrastructure, with a corresponding transformation of areas for housing in the WTG wind farm. In contrast, agricultural areas, in particular arable land, are among the largest emit- ters of GHGs. Accordingly, changing the land use of these areas to a use that is neither GHG- trapping nor GHG-emitting can be conditionally considered as reducing GHG emissions.
The change in emissions associated with the land use, land use change and forestry (ZIZIMM) sector must be measured as the difference between the GHG emissions/ removals before the implementation of the measure and the GHG emissions or removals in ecosystems after the implementation of the measure in the area of the proposed activity.
The calculation of GHG emissions and CO2 removals uses the guidelines developed by the In- tergovernmental Panel on Climate Change (IPCC), as set out in the reporting guidelines under the convention – the 2006 IPCC guidelines for the preparation of national greenhouse gas inventories.
The third aspect of GHG emissions covered by the assessment is the impact of the proposed activity on the reduction or substitution of GHG emissions in energy production, in the form of the substitution of fossil energy (and associated GHG emissions) by RES-generated energy.
4.9.3 Calculation of GHG emissions and removals from the proposed activity
The climate impact of the proposed activity is assessed as the change in the type and amount of greenhouse gas emissions resulting from the proposed activity. These consist of changes in GHG emissions associated with the implementation of the proposed activity (1) the life cycle of the WTG, (2) construction – deforestation emissions and emissions associated with land- use change, and (3) reduction or substitution of GHG emissions associated with the imple- mentation of the proposed activity – substitution of energy (and associated GHG emissions) from fossil resources by energy produced from RES.
WTG life cycle emissions
According to the estimates of the IPPC Task Force77, analysing the life cycle CO2 emissions of different types of electricity generation, electricity generation in a WTG only emits an average
77 https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter7.pdf
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
187
of 7 g to 56 g CO2eq, with most of the emissions coming from the construction of infrastruc- ture and the extraction of materials. These emissions are significantly lower than those asso- ciated with, for example, the power generation a combined cycle gas plant generates (which is approximately 500 g CO2eq, and where emissions consist of both direct emissions and emis- sions associated with the gas extraction process and associated methane losses), or biomass plants (which is approximately 125 g CO2eq, and where a large part of the emissions are due to infrastructure development and biogenic emissions and albedo effects).
GHG emissions from the WTG construction
A preliminary assessment suggests that an area of approximately 46.76 ha (including access roads within the assembly field) would be required for the construction of all 19 potential WTG sites. According to the information available at the time of the environmental impact assessment, the assembly areas and the additional access roads to be constructed will be lo- cated on agricultural land, uncultivated agricultural land and forested areas.
For the calculation of GHG removals, it is assumed that the area to be converted to other land uses in the area of the proposed activity is converted to an industrial land use, with no GHG removals or emissions. This results in a worst-case scenario, as it will actually be possible to use part of the land to be transformed for future economic activities after the construction of the WTGs (see Chapter 3.3). The land uses in the area of the proposed activity that are planned to be transformed into other land uses are:
- agricultural land is considered to be a source of GHG emissions, so the implementation of the proposed activity and the change of existing land uses to non-GHG emitting uses will reduce GHG emissions from the proposed activity;
- 17.3 ha of forest, where GHG removals are estimated as CO2 sequestration in living biomass (wood), dead wood and soil organic matter. The transformation of this area will be associated with an increase in GHG emissions. It is important to note that the proposed wind farm is subject to the requirements of the act on the facilitated proce- dures for the construction of the energy supply buildings required for the promotion of energy security and autonomy, and article 9, paragraph one of the act provides that if wind power plants are built on forest land, the negative effects of deforestation must be compensated by afforestation. Afforestation of new areas is expected to lead to a long-term recovery of the capacity to sequester emissions.
Accordingly, it can be concluded that the long term impact of GHG emissions from the ZIZIMM sector can be assessed as neutral, taking into account the compensation mechanism envis- aged.
GHG substitution or sequestration
The most significant part of the GHG emissions balance is the reduction or substitution of GHG emissions associated with the proposed activity – the replacement of fossil energy (and asso- ciated GHG emissions) by RES energy.
In order to estimate the GHG emissions displaced by RES-based power generation, a calcula- tion of the GHG emissions change associated with the transfer of electricity produced during the introduction of new power generation technologies to the electricity grid has been carried out. Cabinet regulation no. 42 of 23 January 2018, on a methodology for calculation of GHGs, establishes a common methodology for the calculation of GHG emissions to assess the climate
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
188
change impact of measures and projects, including the climate change impact of planned or implemented measures that are intended to introduce renewable energy technologies. The change in GHG emissions associated with the introduction of new electricity generation tech- nologies during the transfer of the electricity generated to the electricity grid is calculated using the following equation:
= × − × ,
– Change in GHG emissions, in t CO2 eq per year;
– the amount of electricity generated by renewable energy technologies to be fed into the grid, in MWh per year;
– CO2 emission factor for electricity in accordance with article 1 of Annex 1 to cabinet regulation no. 42 of 23 January 2018, on a methodology for calculation of greenhouse gas emissions, in t CO2/MWh;
– CO2 emission factor for electricity transmission in the electricity grid in ac- cordance with article 1 of Annex 1 to cabinet regulation no. 42 of 23 January 2018, a method- ology for calculation of greenhouse gas emissions, in tCO2/MWh.
Based on the forecasts of the energy production potential provided by the WTG producers, as well as the data on wind speeds in the area of the proposed operation accumulated so far, it is estimated that the Lode wind farm could generate between 374.49 and 594.51 GWh of electricity per year.
In accordance with Article 1 of Annex 1 to cabinet regulation no. 42 of 23 January 2018, on a methodology for calculation of greenhouse gas emissions, the factor for electricity transmis- sion in the electricity grid is set at 0.007 t CO2/MWh. In accordance with Annex 1 to the afore- mentioned regulation, the CO2 emission factor for electricity produced in Latvia must be cal- culated using the following formula:
= Σ( × ) ,
– CO2 emission factor for electricity produced in Latvia, t CO2/MWh;
– amount of electricity produced in Latvia using fossil fuels, MWh;
– CO2 emission factor for the type of fuel used in accordance with article 1 of Annex 1 to cabinet regulation no. 42 of 23 January 2018, on a methodology for calculation of GHGs, in tCO2/MWh;
– amount of electricity produced in Latvia, MWh.
Based on data provided by the Ministry of Climate and Energy (KEM)78, the CO2 emission fac- tor for electricity produced in Latvia in 2021 (latest available information) is 0.0735 t CO2/MWh.
In line with the above, the potential reduction of GHG emissions associated with the transfer of electricity produced by new generation technologies to the electricity grid is estimated to
78 https://www.kem.gov.lv/lv/siltumnicefekta-gazu-emisiju-aprekina-metodika
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
189
range from 24 791.24 t CO2 eq./year to 39 356.56 t CO2 eq per year, depending on the selected model of the WTG turbines.
The avoided GHG emissions from power generation over the lifetime of the WTG (25 years) are estimated (depending on the WTG technology) at between 619 781 and 983 914 t CO2eq.
4.9.4 Measures to mitigate climate impacts
In the event of implementing the proposed activities, energy generation from renewable sources will be ensured. The electricity generated will replace the fossil fuel energy and asso- ciated greenhouse gas emissions needed to produce it, with benefits for the climate. The pro- posed activity will help to reduce CO2 emissions that would otherwise occur if the same en- ergy produced by the proposed WTG were otherwise partially or wholly produced in conven- tional fossil fuel-fired power generation plants. Given the potential lifetime of the proposed WTG of 25-30 years, the replacement of emissions will take place over a substantial period of time. This is a significant positive effect in the long term.
The replacement of GHG emissions over the lifetime of the WTG is expected to be significantly higher than the life cycle emissions of the turbines as well as the emissions associated with the deforestation required for the planned construction of the WTG and the proposed activity has a positive effect on the climate. In view of the above, no mitigation measures are required.
4.9.5 Evaluation of alternatives
In the context of technological alternatives, the construction of plants with the highest elec- tricity generation potential, increasing the avoided GHG emissions, is considered a better op- tion.
4.10 Geology and hydrology
In line with the EIA programme, this chapter presents:
- a description of the geological structure and engineering geological conditions of the site that determine the construction conditions;
- the geological description of the site, a description of the mineral extraction sites and the impact of the proposed activity on them;
- characteristics of the watercourses and water bodies in the area
- characteristics of natural drainage and amelioration systems likely to be affected by the proposed activity, including during construction, characteristics of the potential for flooding (including flow directions);
- characteristics and use of nearby water abstraction points and groundwater deposits.
A summary of the potential impacts on these aspects is presented at the end of the chapter.
4.10.1 Impact assessment approach
The information gathered and the impact assessment were based on information available in the municipality’s planning documents and public information sources:
1) Information from the Latvian Centre for Environment, Geology and Meteorology (LVGMC):
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
190
- Subsoil information systems79;
- Water and flood management information systems80;
- Unified environmental information systems (information on groundwater and bore- holes)81;
2) Ministry of Agriculture real estate (MARE) information from:
- Land amelioration cadastre information system82.
4.10.2 Geomorphological, geological and engineering geological conditions
The planned area of the Lode wind farm is located in the northern part of the Burtnieka Plain in the North Vidzeme lowlands, to the west of the Ērģemes hills of the Sakalas upland. The North Vidzeme lowland is a divergent lowland; it occupies a large depression in the bedrock surface that expands in the direction of glacial flow. Its topography is formed by extensive fields of divergent drumlins, which formed under conditions of outburst flow of ice masses, and thus their long axis forms a spreading fan. As the ice masses slowed unevenly along the slope of the Ērģemes hills in the Sakalas upland, convergent drumlin fields are also observed in the vicinity of the assessment area, where the long axis of the drumlins coalesces in the direction of glacier flow. The Burtnieka Plain is located in a depression in the bedrock surface that was filled by the Burtnieka ice sheet during the last glaciation.
The plain is characterised by a thin quaternary cover. It is structured as undulating plains with drumlin landforms.83 Drumlins are elongated hills and mounds oriented in the direction of glacial flow. Divergent drumlins are composed of folded glacigenic or glaciolacustrine sedi- ments (older moraine – sandy gravel or clayey sediments). Convergent drumlins are composed of diapiric folded glaciofluvial sediments or pre-quaternary sediments: aleurolite, sandstone and clay.84 The assessment area is underlain by quaternary sediments of the Middle Devonian Burtnieki suite D2br, consisting of red-brown or yellow-brown micaceous sandstones, mottled and red-brown, sometimes green-grey aleurolites, aleurotic clays and claystones, and, in the northernmost part of the site, the D2ar sedimentary rocks of the Middle Devonian Arukilas suite, consisting of fine-grained, light red-brown sandstones, red-brown, sometimes green- grey, mottled, aleurotic clays, claystones and aleurolites.85 The thickness of the quaternary sediment cover in the area is mostly in the range of 10 m to 20 m, up to 10 m near the Arakstes village, and over 20 m south of Ipiķi.86
79 https://videscentrs.lvgmc.lv/iebuvets/zemes-dzilu-informacijas-sistema 80 https://videscentrs.lvgmc.lv/lapas/udens-apsaimniekosana-un-pludu-parvaldiba 81 https://videscentrs.lvgmc.lv/lapas/vienota-vides-informacijas-sistema 82 https://www.melioracija.lv/ 83 Zelčs, V. 2018. Large landforms. Nikodemus, O. et al. (eds. in chief) Latvia. Land. Nature. Nation. Country. Riga: Academic Publishing House of the University of Latvia, 89–93. 84 Zelčs, V. 2018. Glacial landforms. Nikodemus, O. et al. (eds. in chief) Latvia. Land. Nature. Nation. Country. Riga: Academic Publishing House of the University of Latvia, 93–109. 85 Map of pre-quaternary sediments. 2010. Map of pre-quaternary sediments at a scale of 1:200 000. LU ĢZZF WMS. Available at: http://kartes.geo.lu.lv/karte/ 86 Quaternary thickness map, 2010. Map of quaternary sediment thicknesses. Available at: http://www.geo.lu.lv/karte/
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
191
Figure 4.10.1. Quaternary sediments in and around the WTG study area
The area around the planned WTG is characterised by moraine deposits, with moraine hills, dykes and ridges. But the planned cable line connecting the Lode WTG with the existing 330 kV line TEC-2 – EST in the parish of Ipiķi and the substation construction site is located in the moraine plain, with a characteristic drumlin terrain.87 Peat deposits occur in the inter-tidal depressions. 88 The topography in the area of the planned WTG wind farm, northwest of the village of Arakstes, varies between 69 and 81 m, and in the path of the planned cable route from 63 m. There are no lakes in the area, but there are several small rivers flowing southeast- wards towards the river Rūja in the Salaca basin - Veserupīte, Krūmiņupīte, Silupīte, Raudava, Melderīšupīte, Pestava. The surrounding area is home to frequent bogs: Urgas, Bērzu, Lucas, Lobinu and Titas bogs.89
The following quaternary sediments are present at potential WTG construction sites:
- gQ3ltv - glacigenic (glacial) sediments - moraine sandy loam, moraine loamy sand (WTG L_02, L_04, L_05, L_06, L_07, L_08, L_09, L_10, L_11, L_12, L_13, L_14, L_15, L_16, L_17, L_18, L_19, substation, partly also VES L_01, L_03, L_06, L_15);
- bQ4 - Biogenic (bog) sediments - peat (WTG L_01, L_03, L_06, L_15, partly also WTG L_02, L_08, L_10, L_19).
87 Latvian terrain. National Encyclopedia. Available at: https://enciklopedija.lv/skirklis/26548-Latvijas-reljefs 88 Map of quaternary sediments. LVM GEO. Available at: http://www.lvmgeo.lv/kartes 89 LVM GEO. Geographic information system. Available at: www.lvmgeo.lv/kartes
The map is referenced to the Latvian coordi- nate system (LKS-92) in TM projection. The ge- ological map of Latvia at a scale of 1:200 000
and the digital map JS Baltija prepared by Jāņa sēta, SIA were used as a base.
gQ3ltv – glacigenic (glacial) sediments. Moraine sandy loam, moraine loamy sand.
gfQ3ltv – glaciofluvial (glacial meltwater) sediments. Sand with gravel. Sand with gravel and pebbles.
glQ3ltv – glaciolamic (glacial meltwater basin) sedi- ments. Aleuritic clay, clayey aleurite.
bQ4 – biogenic (bog) sediments. Peat.
aQ4 – alluvial (fluvial) sediments. Sand, gravel, pebbles, aleurite.
Wind power plant
Planned cable route
Access road
Construction site
Substation
Survey area
National border
Legend
Quaternary sediments
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
192
Information on the distribution of quaternary sediments in the study area and its vicinity is provided in Figure 4.10.1. The distribution of sediments shown on the map is more informa- tive and may not correspond to the actual situation on the ground, given the scale and level of detail of the map. The assessment of the sediments present at the WTG construction sites has already been analysed in more detail, taking into account the terrain and forest types. To obtain more precise data, exploratory drilling should be carried out at specific locations of the planned infrastructure during the design phase.
According to the Latvian Building Code LBN-207-15, on geotechnical design, a detailed engi- neering investigation is required for the construction of a WTG to determine the structure of the soil, its physical and mechanical properties and possible changes during construction and operation of the structure. In the case of footing or piling, foundation design should be carried out to calculate the depth and dimensions of the foundations and to determine the most ap- propriate methods of construction.90
According to the depth-to-water mapping data91, the groundwater table in most of the area of the proposed operation is up to 5 m deep, and up to 10 m to 15 m deep near the village of Ipiķi. According to the mapping data, the groundwater table at seven potential WTG sites (WRG L_01, L_03, L_06, L_15, L_16, L_17, L_19) is up to 1 m deep (see Figure 4.10.2).
According to the results of the analysis of long-term data from the Baltic Area Seismological Observation Network (BASEVEN), the study area is located in a seismically low-active zone, where the epicentres of almost all recorded earthquakes are outside Latvia. In 2022, 214 cred- ible seismic events have been recorded in the Baltic region. 19 seismic events have been rec- orded in Latvia’s land territory and maritime area. Seismic observations have been recorded mainly in the western part of Latvia. The strongest event was observed on 20 September on the Latvian land territory near Kolka, with a magnitude of 2.6.92 In the map of seismogenic zones of Latvia, where the existing and potential future earthquakes have been analysed, the nearest safe zone (ZCR) to the study area is Sigulda, the potential zone (ZCRP) is Valmiera and the seismotectonic zone (ST) is Svētupe. These areas are subject to possible tremors with an intensity of up to 6 on the MSK-64 scale at the epicentre.93
90 Regulations on Latvian building code LBN 207-15, on geotechnical design. cabinet regulation no. 265. adopted on 2 June 2015. 91 Interreg Baltic Sea Region project WAMBAF Tool Box (#X007) and a LIFE study on the demonstration of climate change mitigation options in fertile organic soils in the Baltic States and Finland (LIFE OrgBalt, LIFE18 CCM/LV/001158). 92 https://videscentrs.lvgmc.lv/lapas/seismologiskais-monitorings 93 https://dspace.lu.lv/dspace/bitstream/handle/7/4865/36137-Valerijs_Nikulins_2008.pdf?sequence=1
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
193
Figure 4.10.2. Groundwater model for clayey sediments in and around the WTG study area
4.10.3 Mineral deposits
According to the information available in the subsoil information system of the Latvian Envi- ronment, Geology and Meteorology Centre (LVGMC)94 and the Estonian Land Service subsoil information system95, there are relatively numerous peat deposits and deposits in the terri- tory of the proposed activity and its vicinity. Real peat extraction has been carried out in the Akmeņgravas forest massif swamp, and also in a small area in the Tītas swamp. Peat extraction is currently active in the Pätsi peat bog in Estonia. There are also sand and sand-gravel depos- its, a freshwater limestone deposit and areas of inferred sand and sand-gravel resources within or in close proximity to the assessment area (see Figure 4.10.3).
The nearest mineral extraction site, Arakste (B1864), is located to the east of the site, approx- imately 300 m from the construction site of WTG L_15, while the nearest predicted mineral resource site, Ūskalns (B17132), is located to the north of the site, approximately 400 m from the construction site of WTG L_06. Geological surveys on the Arakstes deposit (B1864) were carried out in 1982. It has sand and sand-gravel resources of varying coarseness. The site has a history of mineral extraction and information is available on the issue of a mining licence on 5 June 2009, which was annulled on 1 November 2013. According to the available information, there is currently no mineral extraction from the deposit. As of 2015, the estimated reserves (category N) are 7,800 m3 sand-gravel and 51,100 m3 of sand.
94 https://videscentrs.lvgmc.lv/iebuvets/zemes-dzilu-informacijas-sistema 95 https://xgis.maaamet.ee/xgis2/page/app/maardlad
The map is referenced to the Latvian coordinate sys- tem (LKS-92) in TM projection. The geological map of
Latvia at a scale of 1:10 000 and the digital map JS Bal- tija prepared by Jāņa sēta, SIA were used as a base.
Data source: Interreg Baltic Sea Region project WAMBAF Tool Box (8X007) and a LIFE demonstration of climate change mitigation options in fertile organic soils in the Baltic
States and Finland (LIFE OrgBalt, LIFE 18 CCM/LV/001158)
Groundwater model for clayey sediments
Wind power plant
Planned cable route
Access road
Construction site
Substation
Survey area
Watercourse
National border
Legend
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
194
The Estonian peat extraction site Pätsi (VILM-037) is located approximately 420 m from the construction site of WTG L_01. The site contains poorly to well decomposed peat. The mining licence was issued on 6 September 2007.
Prospecting for minerals at the Ūskalna (B17132) inferred mineral resource area was carried out in 2019. Two potential sand fields with estimated reserves (category P) of 147,400 m3 and
7,800 m3. The exploration concluded that the reseves are characterised as low-grade, and are not a prospective mineral deposit.
In the western part of the assessment area, in the parish of Ipiķi, there are three mineral de- posits and inferred resource areas in the vicinity of the planned cable route and substation.
- Prospecting for minerals at the Ķirbēnu (B17340) prospected mineral resource area was carried out in 2021. Resources of sand and gravel were identified. As of 2022, the estimated reserves (category N) were 180,000 m3 of sand-gravel and 147,700 m3 of sand.
- Geological surveys were carried out in 1963 on the Lake Tītas deposit (B450). It con- tains greyish-white or blue-grey freshwater lime. It is loose and powdery, with remains of plant roots and shells. According to the available information, no mineral extraction has been carried out in the deposit. As of 1963, the explored reserves (category A) amounted to 31,000 m3 of freshwater lime.
- Geological prospecting of the Veckabuli deposit (B1170) was carried out in 1984. It has fine-grain to medium-grain sand resources, some of which are gravelly. The deposit has a history of mineral extraction, but according to the available information, no min- eral extraction is currently taking place. As of 1984, the explored reserves (category A) amounted to 36,000 m3 of sand.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
195
Figure 4.10.3. Mineral deposits and inferred resource areas in and around the WTG study area
Table 4.10.1 summarises information on mineral deposits and inferred resource areas in the vicinity of the proposed activity.
Table 4.10.1. Mineral deposits in the vicinity of the proposed activity
Name Minerals Status Distance to the nearest WTG construc- tion site, m
Arakste (B1864)
Sand, sand-gravel Extraction sus- pended
320 (WTG L_15)
Pätsi (VILM- 037)
Peat Active extraction 420 (WTG L_01)
Uskalns (B17132)
Sand Projected resource area
770 (WTG L_06)
Lake Tītas (B450)
Freshwater lime- stone
Extraction not started
415 (cable route)
6500 (L_06)
Ķirbēni (B17340)
Sand, sand-gravel Projected resource area
955 (cable route)
5300 (L_19)
Veckabuļi (B1170)
Sand Extraction sus- pended
2100 (substation)
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The geological map of Latvia at a scale of 1:10
000 and the digital map JS Baltija prepared by Jāņa sēta, SIA were used as a base. Data source: LVGMC unified environmental infor- mation system, Estonian Land Administration (Maa-amet) data-
base.
Wind power plant
Planned cable route
Access road
Construction site
Substation
Survey area
Projected resource ex- traction area
Mineral deposit
Peat deposits
Mining limit area
Peat deposits (Estonian territory)
Active deposit (Estonian territory)
National border
Legend
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
196
4.10.4 Characteristics and use of nearby water abstraction points and groundwater deposits
The area of the proposed activity is located in the eastern part of the Baltic artesian basin and is part of the Arukila-Amata (D2-3ar-am) groundwater aquifer complex. Taking into account the information available in the LVGMC unified environmental information system96, where infor- mation on groundwater and boreholes is maintained and updated, there are no registered water supply boreholes in the study area of the proposed activity, but 10 boreholes (D2ar, D2br, Q) providing water supply are registered within a radius of 1 km (see Figure 4.10.4).
The information available on the water boreholes in the vicinity of the proposed activity in the unified environmental information system of the LVGMC is summarised in Table 4.10.2.
96 https://videscentrs.lvgmc.lv/lapas/vienota-vides-informacijas-sistema
Figure 4.10.4. Water supply boreholes in and around the WTG study area
Legend
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The geological map of Latvia at a scale of 1:10
000 and the digital map JS Baltija prepared by Jāņa sēta, SIA were used as a base.
Data source: LVGMC unified environmental information system, Estonian Land Administration (Maa-amet) da-tabase.
Water supply borehole
Water supply borehole (Estonian territory)
Wind power plant
Planned cable route
Access road
Construction site
Substation
Survey area
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
197
Table 4.10.2. Underground water supply boreholes closest to the proposed development and adjacent area
Bore- hole No. Address
Year of drilling
Water aquifer (geological in-
dex)
Bore- hole
depth, m
Borehole status
11,274 Ipiķi, Ipiķi water tower 1969 D2ar 100 opera- tional
17190 Nuķi village 1965 D2ar 97 un-
known
18,496 Sudmalas (the former
Vecātes farm) 1967 D2ar 70
un- known
18,662 Rentes farm 1974 D2ar 100 un-
known
21881 Gaiduļi 2007 D2ar 88 un-
known
26,800 Ipiki, land parcel Depo 2022 Q 11 un-
known
26,801 Ipiki, land parcel Depo 2022 D2br 24 un-
known
26,802 Ipiki, land parcel Depo 2022 D2ar 100 un-
known
7,492 - - - - -
7,494 - - - - -
4.10.5 Characteristics of the surface water bodies closest to or crossing the site
The territory of the proposed activity falls within the Gauja river basin district97 and according to the information from the melioration cadastre of the Ministry of Agriculture98 the territory falls within the catchment areas of the Veserupīte, Krūminupīte, Roja, Raudava, Pestava and Ramata99 rivers. Watercourses of national importance crossing the study area of the proposed activity are:
- Veserupīte (land amelioration cadastre no. 5452984:01);
- Krūminupīte (land amelioration cadastre no. 5452982:01);
- Pestava (land amelioration cadastre no. 54526:01).
Shared watercourses are located in the eastern and western parts of the study area. The agri- cultural land in the area, which is mainly located on elevated terrain, has a dense drainage network, while drainage ditches have been installed in depressions in the terrain, which are
97 Water management act. Available at: https://likumi.lv/ta/id/66885-udens-apsaimniekosanas-likums 98Land amelioration cadastre information system. Available at: https://www.melioracija.lv/ 99 cabinet regulation no. 397. Regulation on the classification of water management districts. Available at: https://likumi.lv/ta/id/300155-noteikumi-par-udens-saimniecisko-iecirknu-klasifikatoru
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
198
predominantly forested. A denser network of ditches is located in the southern part of the WTG wind farm, in the vicinity of WTG L_19 (see Figure 4.10.5).
The planned infrastructure associated with the wind farm is mostly located on well-drained agricultural land, while the locations and construction sites of the WTGs themselves are lo- cated both on agricultural land and in forested areas, which are also mostly reclaimed. Cur- rently, the spatial plan of Rūjiena Region is in force in the assessment area, according to the division of administrative territories as it was before the administrative-territorial reform, as the new spatial plan of Valmiera Region is still under development.
In accordance with the regulation on the use and development of the territory of Rūjiena region (TIAN)100, any surface water and groundwater drainage system in the territory of the proposed activity must be maintained throughout the land unit and along its perimeter, unless otherwise specified in the building regulations or detailed planning. Detailed information on the widths of the protection zones for water bodies is provided in chapter 2.2 of the EIA re- port.
Figure 4.10.5. Watercourses and drainage ditches of national importance in and around the WTG study area
As part of the proposed action, it is planned to construct new access roads over the Krūmiņupīte, connecting WTG L_09 with WTG L_10 and WTG L_03 with WTG L_05. The planned access roads will also include cable lines in the right of way, which will feed the
100 Rūjiena Region: spatial plan 1.0. Available at: https: https://geolatvija.lv/geo/tapis#document_70
The map is referenced to the Latvian coordinate system (LKS- 92) in TM projection. The geological map of Latvia at a scale of 1:10 000 and the digital map JS Baltija prepared by Jāņa
sēta, SIA were used as a base. Data source: ZMNĪ land amelioration cadastre information
system, 2023
Legend
Wind power plant
Planned cable route
Access road
Construction site
Substation
Survey area
Watercourses of national importance: regulated sections Watercourses of national importance
Large diameter collectors
Collectors
Drainage ditches
Drainpipes
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
199
generated electricity from the stations to the 330 kV substation. The potential route of the cable line to the proposed substation site crosses the protection zones of the Melderīšupīte river and the Pestava river (see Figure 4.10.6).
According to the regulation on the use and development of the territory of the region of Rūjiena, the Pestava, Melderīšupīte and Raudava rivers have a 50 m wide protection zone, while the Krūmiņupīte and Veserupīte have a 10 m wide protection zone. Lake Tīta and the Arakstes pond also have a 10 m protection zone. Lake Tīta is now completely drained and there is a marsh in its place. The lake was historically drained by dredging the Pestava rive and diverting its waters past the lake. According to section 37, paragraph 3 of the act on protection zones, it is prohibited to perform clear felling in a zone that is 50 metres in width or in the entire width of the protection zone if the protection zone is narrower than 50 metres, except for a forest stand where the dominant tree species is white alder, to perform trees felling for the liquidation of the consequences of emergency situations and for the liquidation of the consequences of windthrow, windfall, and snow-thrown wood, and also for the regeneration and management of alluvial meadows. According to section 37, paragraph five, clause b of the above act, it is prohibited in the 10-metre zone to build or to place any buildings and struc- tures, including fences (except for the renovation of existing structures; restoration of cultural monuments; construction of transport and electronic communications networks.
Detailed information on the extent of the protection zones for water bodies is summarised in Chapter 2.2 of the EIA report. The assessment of the potential WTG sites indicates that the WTG L_08 site is located within the 10 m protection zone of Krūmiņupīte, but the site does not require clear-cutting. The construction sites of WTGs L_10 and L_17 are also planned rel- atively close to the river, approximately 15 m to 30 m from it. In the areas where the pitches are to be built, there are ditch systems that are directly connected to the Krūmiņupīte, and for this reason the construction design must provide solutions that ensure the functioning of the existing drainage systems.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
200
In accordance with Directive 2007/60/EC of the European Parliament and of the Council101 on the assessment and management of flood risks (adopted on 23 October 2007) and the Latvian water management act, significant flood risk areas have been identified for each river basin102,
flood risk maps have been developed and flood risk management plans have been prepared. Flood risk maps for river basins, which are a probabilistic model of recurrent flood risk based on mathematical calculations, were approved by the Ministry of Environmental Protection and Regional Development on 11 March 2020. According to the Gauja river basin district flood risk management plan for the 2022–2027 period103, the proposed action site is not located in a flood risk area of national importance (VNPRT). The nearest area at risk of flooding is located approximately 3.5 km to the southeast, in the floodplain of the River Rūja and adjacent land.
The Gauja River basin district management plan assesses the ecological quality of water bod- ies. The assessment is presented for the water bodies Ramata (G307), Rūja_2 (G310) and Rūja_4 (G312) (see Figure 4.10.6). The ecological status of water body G307 Ramata is
101 Directive 2007/60/EC of the European Parliament and of the Council on the assessment and management of flood risks. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 102 Flood risk and flood hazard maps. Available at: https://videscentrs.lvgmc.lv/iebuvets/pludu-riska-un-pludu- draudu-kartes 103 Gaujas upju baseinu apgabala apsaimniekošanas un plūdu riska pārvaldības plāns 2022. – 2027. gadam. Piee- jams: https://videscentrs.lvgmc.lv/lapas/udens-apsaimniekosana-un-pludu-parvaldiba
Figure 4.9.6. Surface water bodies and watercourse protection zones in and around the WTG study area
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The base is:
the digital map JS Baltija prepared by Jāņa sēta, SIA. Data source:
Interactive ŪO map published by LVGMC.
Legend
Wind power plant
Planned cable route
Access road
Construction site
Substation
Survey area
Watercourse
Watercourse protection zone
National border
Boundaries of surface water bodies
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
201
assessed as good. The ecological quality of the river has improved from medium to good. The ecological status of the water bodies G312 Rūja_2 and G310 Rūja_4 is assessed as moderately good. In Rūja_4, it has remained unchanged, but there are no data for Rūja_2 in the last ob- servation cycle.
The progress of the ecological status of the water bodies is summarised in Table 4.10.3.
Table 4.10.3. Progress on the ecological status of surface water bodies104
Water object (WO) Code 2nd cycle – 2015
2nd cycle – 2021
3rd cycle – 2021
Changes
Ramata G307 Poor Medium Good Improvement (+1)
Rūja_2 G312 Medium Medium No data
Rūja_4 G310 Medium Medium Medium No change
4.10.6 Potential impacts and mitigation measures
Geological and engineering geological conditions
The geological and engineering geological conditions of the site must be taken into account when constructing a WTG. Prior to the construction of the WTGs in the area of the proposed operation, an engineering geological survey is required, and geotechnical supervision of the construction works must be ensured. Taking into account the Latvian Building Code LBN 207- 15, on geotechnical design, the foundation footing should be deeper than the probable long- term frost depth in order to avoid foundation deformation due to soil deformation. The con- struction works should not be carried out in a prolonged period of time when the subsoil is wet, as clayey soils are plastic and prolonged exposure to precipitation significantly reduces the bearing capacity of the subsoil. The design of the substructure must prevent flooding of the site and limit the impact of water by means of drainage or water drainage channels.
The available geological material indicates that the area of the proposed development is suit- able for construction and that no engineering geological conditions have been identified that would preclude the construction of the wind farm. According to the quaternary sediment map, the upper part of the geotechnical section consists of naturally stable soils that can serve as a natural base for the structures: glacigenic moraine sandy loam and sandy clay. In some places, there are also peat deposits unsuitable for construction. It is likely that in such loca- tions, the peat will need to be replaced with suitable soil, foundations constructed on piles or the planned location of the WTGs changed to one with more suitable geology and soils with adequate bearing capacity.
No impacts on the geological and engineering conditions of the site are expected from the construction or operation of the WTGs.
Mineral deposits
104 Ibid.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
202
Given the location of the proposed wind farm in relation to nearby mineral deposits, the con- struction and operation of the WTGs is not expected to have a negative impact on the mineral deposits or projected resource areas.
Nearest water abstraction points and underground water deposits
The construction of the WTGs is not expected to have any negative impacts on the quality of water abstraction points (boreholes), groundwater wells and groundwater and water levels.
According to the register of contaminated and potentially contaminated sites maintained by the LVGMC, there are no contaminated or potentially contaminated sites (see Chapter 2.1) in the area of the proposed wind farm that could affect groundwater quality.
The proposed operation, construction, operation and subsequent reclamation of the WTGs and access roads will involve temporary topsoil stripping and excavation works, during which geotechnical supervision of the works must be provided to ensure monitoring of groundwater levels and quality. The foundation solution for each WTG to be constructed will be determined taking into account the soil bearing capacity and groundwater level in the area of the pro- posed operation.
During construction activities in the area of the proposed operation, there is a risk of contam- ination of the ground or groundwater in the event of spills of fuel or lubricants from construc- tion machinery. Although the extent of such contamination could be small if the construction process is carried out in accordance with the construction organisation and using equipment and machinery in good working order, the proponent intends to take precautionary measures in those areas where construction machinery will be permanently present, by carrying out a soil contamination assessment before dismantling the sites and deciding on the further use of the removed soil.
Although such precautionary measures do not eliminate the possibility of contamination of soil and groundwater, they will ensure that contaminated soil, if found, as well as the area where it is located, will be remediated in accordance with regulatory requirements, prevent- ing the spread of contamination to soil and groundwater.
Surface water bodies closest to/crossing the site
Given that most of the potential WTG construction sites are located in forest land, including areas where groundwater levels are reportedly high, it may be necessary to regulate the mois- ture content of forest land. In accordance with article 116 of cabinet regulation no. 329, on the Latvian building standard LBN 224-15 and melioration systems and hydraulic structures (in force from 1 July 2015), the regulation of forest land humidity is ensured by the regulating network: drainage ditches, runoff guides and road ditches. Article 4 of the aforementioned regulation stipulates that drainage systems and hydraulic structures must be designed in ac- cordance with this building standard and other normative acts in the field of construction, drainage and environmental protection. All activities related to the modification/development of the drainage system will be carried out in parallel with site preparation works, as well as the construction of access roads and plazas.
Where existing and planned roads cross open watercourses, new culverts should be built or the need to rebuild existing culverts should be assessed.
Based on the available information on the planned construction works related to the altera- tion of individual sections of drainage and drainage systems or structures in the area of the
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
203
proposed operation, it is not possible to identify at this stage any factors that could have a significant adverse effect on the functionality of the existing drainage system.
4.10.7 Evaluation of alternatives
Given that all the technological alternatives under evaluation are considered to be similar in the context of factors that may affect geological or hydrological conditions, there is currently no reason to consider any of the WTG models under evaluation as superior to the others. To mitigate potential impacts, guidance is provided on what to consider when starting construc- tion of the proposed wind farm.
4.11 Waste management
This chapter assesses the impacts of wind farm construction, operation and demolition or redevelopment in the context of industrial waste management.
It is expected that municipal, construction and industrial waste will be generated during the construction of the wind farm. Municipal waste generated during the construction, operation and demolition or alteration process will be collected and temporarily stored in municipal waste containers, which are planned to be placed in temporary storage areas for machinery, equipment and materials. The collected waste will be handed over to an operator who has obtained the necessary permits for the transport and management of municipal and construc- tion waste.
4.11.1 Legislative framework
Waste management is regulated by the waste management act (in force from 18 November 2010, as amended on 11 April 2023).
The procedure for accounting of construction and hazardous waste is determined by cabinet resolution no. 133, on the procedure for accounting waste and its withdrawal (in force from 1 July 2021).
The waste management procedure in Valmiera region is regulated by Valmiera municipal council binding regulation no. 115, on household waste management in the Valmiera region, which entered into force on 1 January 2024105. This regulation includes:
- the division of the territory into waste management zones;
- requirements for waste collection, including minimum frequency of collection, transport, handling, sorting and storage of household waste;
- the procedure of payments for waste management
- liability for non-compliance with this binding regulation.
4.11.2 Potential environmental impacts during construction, operation and demoli- tion or redevelopment and mitigation measures
As mentioned in the introduction to the chapter, industrial waste is expected to be generated during the construction, operation and decommissioning or redevelopment of the wind farm.
Construction phase
105 Household waste management in the Valmiera region (likumi.lv)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
204
The most potentially significant impacts relate to the risk of contamination of the ground or groundwater from spills of fuel or lubricants from construction machinery during construction activities in the area of the proposed development. In areas where the likelihood of pollution is higher, i.e. where the WTG structure will be assembled, gravel and crushed stone will be used to create assembly areas of approximately 1 ha. Although the extent of such contamina- tion may be small, if the construction work is carried out in accordance with the construction organisation procedures and using equipment and machinery in good working order, an as- sessment of the soil contamination will be carried out prior to the removal of the assembly areas and, if it is found that the soil is contaminated with petroleum products and cannot be used for its intended purpose without soil remediation, the contaminated soil will be trans- ferred to a waste management company specialised in and licensed to remediate soil contam- inated with petroleum products.
Operation phase
No waste is expected to be generated during the operation of the wind power plants, with the exception of waste generated during maintenance (WTG equipment that has its service life expired and needs to be replaced). Waste collection and disposal during the operation of the wind farm will be contracted out to waste management companies that have been granted permits for the management of the relevant types of waste.
Demolition or reconstruction phase
According to the information presented in Chapter 3.5, the average service life of a WTG is 25 to 30 years. After the WRG has been in operation, the structure may be completely demol- ished or rebuilt by dismantling the aboveground part of the WTG and installing a new WTG on the existing foundations. Manufacturers estimate that most (85–95%) of the materials used to build WTGs are reusable and only a small proportion of materials are currently not recycled but incinerated in special plants.
End-of-life metal structures and equipment resulting from the demolition or rebuilding of WTGs are recyclable and reusable. Other construction materials used (mainly concrete) are also recyclable, with the exception of WTG blades, which are made of composite materials and are considered a material group for which recycling options are currently limited. A pub- lication produced by industry associations in 2020106 at analyses a range of technologies avail- able for the recycling of WTG blades, seeking the best solutions to enhance the durability of composite materials used in the construction of WTGs. Both WTG manufacturers and organi- sations involved in the wind energy industry are now actively looking for simple, cheap and widely applicable solutions for the reuse of polymer materials related to the wind energy in- dustry. For example, Nordex has set a target of fully recyclable blades by 2032107, while Vestas and Siemens Gamesa have set a target of zero-waste WTG production by 2040108,109.
It is currently difficult to predict how much of the materials used to build the WTGs will be recyclable in 25 to 30 years, when a WTG is nearing the end of its service life, but the share of recyclable materials is likely to increase as the amount of recyclable materials available on the market increases and technological solutions for recycling improve.
106 Wind Europe, Cefic, EuCIA, Accelerating Wind Turbine Blade Circularity, 2020 107 https://www.nordex-online.com/en/sustainable-products/ 108 https://www.vestas.com/en/sustainability/environment/zero-waste 109 https://www.siemensgamesa.com/en-int/explore/journal/recyclable-blade
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
205
The generation of waste during the construction, operation and decommissioning or redevel- opment of a WTG is considered to have a direct negative impact on the environment. Given the potential amount of waste generated, the impact is considered to be minor. In the context of industrial waste, there are both primary impacts related to the storage and transport of waste, and secondary impacts related to the consumption of resources, recycling or disposal of waste. Ensuring recycling of the waste produced would have a reversible impact in terms of ensuring the circularity of the resources used, but in the context of waste that cannot be recycled, the impact would be irreversible. The environmental impact assessment has not identified the need for specific monitoring and mitigation measures if waste generated during construction, operation and demolition or redevelopment is managed in accordance with the procedures laid down in the regulatory enactments.
4.11.3 Evaluation of alternatives
Given that all the technological alternatives evaluated are considered similar in the context of waste generation and management, there is currently no reason to consider any of the WTG models evaluated as being superior to the others. To mitigate potential impacts, guidance is provided on what to consider when starting construction and operating the proposed wind farm.
4.12 Environmental risks and emergencies
This section of the report assesses in detail the accident risks associated with the operation of the WTGs, analysing also the significance of the potential consequences and the need for mit- igation measures.
Having studied the available information on accidents with WTGs elsewhere in the world and recommendations from other countries, the following have been identified as potential haz- ards for the risk assessment of these technological installations in the environmental impact assessment:
- mechanical damage/destruction of a WTG by the spreading of debris in its vicinity;
- lubrication system faults with oil leaks;
- WTG fires;
- ice on the rotor blades of the WTGs, with subsequent falling of ice chunks in the vicinity of the plant.
Such accidents can result in risks to human health and life, as well as environmental pollution. On a wider scale, public safety could be endangered by WTG accidents that result in the sep- aration of components from the plant and could endanger people or property in the area where they fall.
Given the location of the wind farm close to the border of Estonia, the assessment also anal- yses the cross-border impact of the accident risk.
4.12.1 Legislative framework
The siting of wind power plants at a safe distance from residential and public buildings in Lat- via is regulated by cabinet regulation no. 16 of 30 April 2013, on general regulations for the planning, use and building of the territory. According to this regulation, in the case of wind
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
206
power plants with a capacity greater than 2 MW, the distance from the boundary of the wind farm to residential and public buildings must be at least 800 m.
Taking into account that the installed capacity of the Lode wind farm will exceed 100 MW, in accordance with the provisions of article 2.3.4 of cabinet regulation no. 563 of 19 September 2017, on procedures for identifying and determining objects of increased danger, as well as for the planning and implementation of civil protection and disaster management, the wind farm will be classified as a category C object of increased danger.
Transnational collaboration on industrial accidents is governed by the convention on the trans- boundary effects of industrial accidents, which came into force on 27 September 2004. How- ever, the quantities and hazards of the chemicals at the site under consideration do not meet the limits specified in this convention, and therefore the provisions of this regulation are not applicable to the proposed activity.
4.12.2 Impact assessment approach
In Latvia, there are no established procedures, principles and criteria for assessing the risk of WTG accidents. For this reason, the experience of other countries and recommendations de- veloped in this field have been used to assess the planned situations.
The Netherlands is one of the leading countries in Europe in then asessment of industrial risks and using the results of risk assessments for spatial planning. As with any industrial facility, an accident risk assessment may be required by the Dutch authorities for the construction of a WTG. One of the accepted methods for this task is the guidelines for the risk assessment of WTGs, developed by the Netherlands Agency for Energy and the Environment in 2002 and last updated in 2020110. These guidelines use information on damage cases recorded in databases in Denmark, Germany, the United Kingdom and the Netherlands.
According to this method, the following basic emergencies are considered in relation to WTGs:
- breaking off a rotor blade;
- mast breakage;
- breaking off the rotor and/or nacelle.
The method developed in the Netherlands has also been used by the department for regional development, environmental planning and projects of the Belgian ministry of the environ- ment as a basis for their own WTG risk assessment manual. Considering that the Belgian WTG risk assessment manual111 is based on the above mentioned Dutch risk assessment principles, the Belgian manual has been used for this risk assessment.
According to the Belgian WTG Risk Assessment Manual, the same accident scenarios are ana- lysed as in the Dutch method and the probabilities of these damage types are summarised in Table 4.12.1.
110 Handreiking Risicozonering Windturbines (Infomil) and Handleiding Omgevingsveiligheid Module IV Speci- fieke rekenvoorschriften (RIVM) 111 Vlaamse overheid, Departement Omgeving, Afdeling Gebiedsontwikkeling, Omgevingsplanning en – guide- lines for the risk calculations of wind turbines (v1.1, 1 October 2019)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
207
Table 4.12.1. Probabilities of wind power plant accident scenarios
Emergency scenario Probability (per year)
Rotor blade breakage:
- for normal operation (rotor rotation speed within the manufac- turer’s specifications);
- 2 × exceeding the rotation speed
6.2 × 10-4
5.0 × 10-6
WTG mast collapse 5.8 × 10-5
Rotor and/or nacelle breakage 1.8 × 10-5
For these accident scenarios, equations have been developed to determine the maximum ex- posure distance and the associated level of risk. The equations are simplified, and use assump- tions such as that the effects of an accident have the same probability in all directions around a WTG. The individual risk distances are therefore defined as circular isolines around a WTG. The most important parameters taken into account in determining the overall level of risk posed by a WTG are:
- total height of the station (m);
- rotor diameter (m);
- total weight of the equipment (t);
- maximum speed of the rotor (rev/min);
- the wind speed at which the station is started (m/s);
- the wind speed at which the station is stopped (m/s).
These parameters are summarised in Table 4.12.2 for each station model considered. In all calculations, the total weight of the station is assumed as being 800 t. The calculations also assume that the gondola is 15 m long, 5 m wide and 7 m high.
Table 4.12.2. Data used in the risk assessment to characterise WTGs
Parameter
WTG model characteristics
Vestas V162-6.2
Vestas V172-7.2
Nordex N163-5.7
Siemens Gamesa SG6.6-170
Total height of the station (m) 247 252 246 250
Rotor diameter (m) 162 172 163 170
Mast height (m) 166 166 164 165
Maximum rotor speed (rpm) 11 11 10.5 10.3
Wind speed (m/s) at which the station is started
3 3 3 3
Wind speed (m/s) at which the station is stopped
25 25 26 25
Under certain humidity and temperature conditions, ice can form on the rotor blades of a WTG, as it can on any other object exposed to the same environmental conditions (buildings, trees, power lines, etc.). Depending on the conditions under which the ice forms, there are two types of ice:
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
208
- frost ice (formed by changes in ambient temperature);
- glaze-like ice (formed by freezing precipitation).
If the plant were to continue operating in icy conditions, this would reduce the efficiency of the WTG, increase the load on the plant and increase the noise from its operation.
The aforementioned Dutch and Belgian risk assessment manuals indicate that WTG risk as- sessments should also consider ice chunks and other smaller debris such as bolts falling from the equipment, but that this should be done qualitatively. This is because in the Netherlands, ice events are not frequent (assumed to be two days per year on average), and ice formation usually occurs on equipment that has been shut down. The procedures for managing the op- eration of WTGs also provide for automatic shutdown in the event of ice formation during operation. When the plant restarts operation, or when wind or ambient temperatures rise, ice can detach from the WTG elements and fall, posing a safety hazard to people and objects in the vicinity. In view of these considerations, the guidelines in these countries only consider ice fall for a stopped installation, and from actual observations, ice chunks are generally dis- persed in the area below the rotor and up to approximately 10–15 m from it. The Dutch WTG risk assessment manual states that the risk of injury from falling ice chunks can be minimised by restricting access to the area below the WTG rotor.
Information from other international studies112 shows that a life-threatening (1% lethality) ex- posure of about 40–60 J to the head, or > 80 J if delivered through the body, is dangerous to human life. For example, a car windscreen can be smashed with an energy of 140 J, while the life-threat level for occupants is 180 J.
Many factors influence the distance that a piece of ice that has become detached from a WTG can produce the above levels of exposure. The most important of these are the size and den- sity of the flying ice particle, the height of the fall, wind speed, wind direction, rotor speed, etc. The most extensive studies and accumulated data on actual exposure distances are avail- able in northern countries such as Canada, Norway, Sweden and Finland. Studies and publica- tions describing methods and recommendations for assessing icefall exposure and associated risk have also been developed by the International Energy Association Wind Technology Co- operation Programme (IEA Wind TCP113).
As part of the environmental impact assessment, calculations have been made on the poten- tial separation distances of ice chunks from the direct hazard of the WTG. The calculations are based on the general ballistic equations114, as well as additional information and studies pre- sented in a publication by Uppsala University115, which allow the calculation of the flying dis- tance of objects by taking into account the following factors:
- the height of the station mast;
- the rotor diameter;
112 Bredesen, R.E., and Refsum, H.A. (2015) Methods for evaluating risk caused by ice throw and ice fall from wind turbines and other tall structures, presented at IWAIS 2015, 16th International Workshop on Atmospheric Icing of Structures, Uppsala, Sweden, June 28 – July 3, 2015 113 IEA Wind TCP – International Energy Agency Wind Technology Collaboration Programme 114 https://web.physics.wustl.edu/~wimd/topic01.pdf 115 Modelling of Ice Throws from Wind Turbines. Joakim Renström. Uppsala University. 2015
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
209
- the rotor speed;
- the wind speed perpendicularly to the rotor operation direction;
- the weight and density of the ice cube;
- the density of the air and the resistance it creates;
- acceleration of free fall;
- the angle at which the body starts to move when ejected from the rotor blade.
The equations described in the literature make it possible to determine the motion of the body in the three coordinate axes x, y and z, taking into account the two main forces acting on the piece of ice when it is separated from the rotor blade: the gravity force and the aero- dynamic resistance. The gravity force is always directed downwards, while the aerodynamic resistance is opposite to the movement of the ice cube in the air.
The gravity force is expressed as:
The aerodynamic resistance is expressed as:
where:
m - mass of the ice cube (kg);
g - acceleration due to gravity;
Cd – air resistance coefficient;
A - cross-sectional area of the ice parcel (m2);
ρ - air density (kg/m3);
V - relative velocity of the ice in the air (m/s).
The equations below describe the motion in three dimensions (x, y and z):
The relative wind speed is defined by:
where U is the wind speed at height z from the ground surface.
= −
= − ∙ ∙ ∙ 2,
∙ 2
2 = −
1
2 ∙ ∙ ∙ ∙ (
− ) ∙ ||
∙ 2
2 = − ∙ −
1
2 ∙ ∙ ∙ ∙ (
) ∙ ||
∙ 2
2 = −
1
2 ∙ ∙ ∙ ∙ (
) ∙ ||
|| = √(
− )
2 + (
)
2 + (
)
2 ,
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
210
The calculations also take into account important aspects such as the surface area of the ice parcel, the angle at which the ice parcel separates from the rotor blade (45° in the worst case scenario), the rotor rotation speed, etc.
In addition, calculations of the impact energy expected at the time of the fall of the ice par-
cel under consideration have been made using the following equations:
where:
vo - initial velocity (m/s);
t - time (s);
a - overall acceleration (m/s2);
vt - velocity at the moment of impact (m/s);
m - body mass (kg);
E - energy at the moment of collision (J).
4.12.3 Description of the current situation
In the context of environmental risk and emergency management, it is important to identify not only the risks associated with the operation of the wind farm itself, but to identify whether there are circumstances in which the coexistence of two or more different objects may create favourable conditions for the potential for cumulative impacts. This increases the significance, magnitude and consequences of a particular hazard. In the preparation of the environmental risk and emergency assessment for the planned Lode wind farm, information on other objects of increased hazard and objects related to economic activities in the vicinity of the proposed area of operation has been assessed.
There are no sites in or near the survey area of the planned Lode wind farm that are classified as high-risk sites in accordance with cabinet regulation no. 46 of 21 January 2021, a list of high-risk sites. The nearest ones are in the city of Valmiera, about 50 km away. A more detailed description of the surrounding area is provided in Chapter 2.1.
No other objects were identified in the area of the wind farm and its immediate vicinity that could significantly alter the level of risk posed by the wind farm, nor whose activities could endanger the operation of the wind farm by increasing the likelihood of accidents in the wind farm.
= 0 + ∙ = ∙
2
2 ,
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
211
4.12.4 Results of environmental risk and emergency assessments
WTG mechanical damage or breakdown
Using the approach described in Section 4.12.1 and the aforementioned Belgian calculation sheet116, the resulting individual risk distances around stations with characteristics corre- sponding to the WTG parameters provided in Table 4.12.2 are summarised in Table 4.12.3.
Table 4.12.3. Individual risk distances from the WTG mast at the Lode wind farm
Individual risk level
Calculated distance (m) Restrictions according to the Belgian WTG risk as- sessment guidelines Vestas
V162-4.5 Vestas V172-7.2
Nordex N163-5.7
Siemens Gamesa SG6.6-170
1 × 10-5 per year
29 30 30 32 Economic operation ob- jects with more than 5 per- manent workplaces
1 × 10-6 per year
230 248 218 225 Area with residential func- tion
1 × 10-7 per year
248 253 247 251 Area with sensitive public infrastructure
When making calculations with the aforementioned Belgian calculation sheet, the applicable safety distances between WTGs and other significant or hazardous objects in that country have also been determined, based on the WTG exposure distances (see Table 4.12.4).
Table 4.12.4. Safety distances from the WTG at the Lode wind farm to other neighbouring objects
Object
Calculated safety distance (m)
Vestas V162-4.5
Vestas V172-7.2
Nordex N163-5.7
Siemens Gamesa SG6.6- 170
Objects of increased hazard:
- SEVESO facilities,
- LNG, CNG, LPG and LNG bunker- ing stations,
- Hydrogen filling stations,
- Gas pressure regulating sta- tions,
- Aboveground pipelines for transportation of hazardous chemicals
657 721 619 642
Underground pressure reservoirs 196 197 194 196
116 Vlaamse overheid, Departement Omgeving, Afdeling Gebiedsontwikkeling, Omgevingsplanning en – pro- jecten, Rekenblad Windturbines (v3.1 - 24 August 2022)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
212
Object
Calculated safety distance (m)
Vestas V162-4.5
Vestas V172-7.2
Nordex N163-5.7
Siemens Gamesa SG6.6- 170
Underground pipelines for transporta- tion of hazardous chemicals
220 220 219 219
Public buildings with a large number of people outdoors
605 666 567 588
Public buildings with a large number of people indoors
196 197 194 196
Main national roads 247 252 246 250
It should be noted that in Belgium and the Netherlands, the regulatory enactments provide that the distances to residential and public buildings from WTGs are determined on the basis of the risk assessment results, while cabinet regulation no. 240 of 30 April 2013 (general reg- ulations for the planning, use and building of the territory) stipulates that for wind power plants with a capacity greater than 2 MW, the distance from the nearest planned boundary of the wind power plant and wind farm to residential and public buildings must be at least 800 m. Therefore, the distances calculated in Tables 4.12.3 and 4.12.4 from residential and public areas must only be used for the station if they are further away than 800 m.
Calculations show that in the case of the planned Lode wind farm, no WTGs are planned to be installed that could pose a risk to residential and public buildings further than 800 m away. For this reason, the location of the stations in relation to residential and public buildings, in compliance with the requirements of the regulatory enactments, provides the necessary level of protection from the risk of mechanical damage caused by the stations.
Lubrication system faults with oil leaks
A WTG is a mechanical machine that uses various lubricants and oils to lubricate its moving parts. The largest amount of oil is in the transmission in the WTG nacelle. Typical WTG gear- boxes use a forced lubrication system with a pump that circulates the oil through the lubrica- tion system. The lubrication system also acts as a transmission coolant.
According to the manufacturers of the WTG models included in the report, the amount of oil in the lubrication system of their transmissions could vary between 650 and 1,500 litres. Dis- charging all or even part of the oil outside the lubrication system can cause a local environ- mental pollution. To reduce environmental pollution in the event of oil spills, biodegradable hydraulic fluids are used in newer WTGs, especially those located in or near water bodies. To reduce the risk of environmental pollution, WTG manufacturers also pay close attention to nacelle seals, which provide additional protection against oil leaking into the mast or rotor in the event of lubrication system failures. The nacelles are also fitted with control systems that shut down the plant in the event of an oil leak, including by stopping the lubrication system pumps.
Despite the safety systems, there is a possibility of oil leaking outside the nacelle, causing environmental pollution. Oil spills can also occur in the event of a WTG failure. In this case, a distance around the station equal to the mast height can be taken as the maximum danger area. The mast heights of the WTG alternatives considered are similar, ranging from 164 m to
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
213
166 m. The maximum mast height can be taken as the maximum radius around the station within which oil contamination could be expected in the event of a station accident. Due to the potential hazard of oils to aquatic organisms and the ability of oil products to spread on the surface of water, increased attention is needed for stations located near water bodies.
There are no large bodies of water or watercourses in the study area of the proposed action. Krūmiņupīte and Veserupīte flow out of the marshes and ditches in the area and meet at Arakste to form Silupīte.
Environmental impact of a wind farm fire
The operation of existing WTGs shows that their activities may also be associated with fire risks. The structural elements and parts of a WTG made of epoxy resin and reinforced with glass fibre fabric are combustible and can spread fire. The WTG nacelle (cover housing) also houses electrical wiring and transmission, which is lubricated by lubricating fluids that can also catch fire.
The possible causes of the WTG fire have been identified as117:
- faults in wiring and equipment;
- mechanically caused spark;
- overheating of hot surfaces or units, e.g. due to temperature rise in the mechanical braking system;
- careless handling of fire during maintenance or repairs;
- lightning.
Information on the probability of fire in WTGs is also mixed, with publicly available sources of information indicating a probability of fire ranging from 1 fire per 15,000 WTGs to 1 fire per 2,000 WTGs per year118, which is based on the 2014 statistics. The statistics available in 2020 also show that the probability of a WTG fire is 1 in 2,000 WTG per year119. However, it should be noted that WTG fire protection and firefighting equipment is continuously being improved, and new stations are being equipped with increasingly efficient automatic fire detection and extinguishing systems.
Despite the ability of the latest systems to effectively detect and suppress fires, the possibility of fire protection system failure remains, which could lead to further fire development. The WTG nacelle and rotor fires are difficult to suppress, because the station’s height makes it impossible to extinguish the fire. None of the equipment available to the fire services is de- signed to work at a height of 160 m to 170 m.
As the fire develops, debris and combustion residues from the combustion of WTGs will spread to the area around the WTG, and gases from combustion will be released into the atmosphere. This means that a WTG fire will cause environmental pollution, and there is a possibility of secondary fires developing in the vicinity of the plant. To mitigate this risk, it is also intended to take into account the potential of safety distances to reduce the risk of forest
117 CFPA-E Guideline No 22:2022 F - Wind turbines fire protection guideline 118 https://www.windsystemsmag.com/turbines-and-fire-risk/ 119 https://www.firetrace.com/fire-protection-blog/wind-turbine-fire-statistics
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
214
fires, as indicated in the Confederation of Fire Protection Associations Europe (CFPA-Europe) guidelines on fire protection for wind turbines120, namely to ensure a 25 m bush-free and shrub-free zone around the WTGs, which is identified in the guideline as the most effective measure to prevent secondary fires in the vicinity of the installation.
The most effective way to reduce the impact of fires is to minimise the chances of them de- veloping and to improve the effectiveness of emergency response. The civil protection and fire safety documentation of the WTGs must include a fire response procedure that specifies the measures to be taken in the event of a fire being detected, including both notification of the services involved and the mobilisation of the necessary resources to contain and eradicate the fire.
Ice formation on the WTG rotor blades, with consequent falling of ice chunks in the vicinity of the plant
Using the method described in Section 4.12.1, the potential ice propagation distance and the intensity of the impact at the calculated propagation distance from the WTGs have been de- termined, corresponding to the parameters given in Table 4.12.2. Calculations have been made at the maximum operating intensity of the plant.
Observations show that in some cases, a piece of ice falling from a WTG can weigh up to 4 kg. According to the information provided in references121, the most typical size of ice chunks ob- served and used in the calculations is between 0.1 and 1 kg, which is also taken into account in this assessment.
Table 4.12.5. Throw distance and power at touchdown of ice chunks at maximum operating speed
Weight of ice chunks
(kg)
Vestas V162-4.5 Vestas V172-7.2 Nordex N163-5.7 Siemens Gamesa
SG6.6-170
Exposure distance (m)
0.1 286 305 302 296
0.3 276 296 290 283
0.5 279 299 288 285
1 292 311 294 293
The following air resistance parameters have been assumed for the calculations122:
- air density 1.3 kg/m3;
- air resistance coefficient of 0.6;
- ice density 800 kg/m3;
- the wind speed at which the station is stopped (according to Table 4.12.2);
- maximum rotor speed (according to Table 4.12.2).
120 CFPA-E Guideline No 22:2022 F - Wind turbines fire protection guideline 121 Seifert, H., A. Westerhellweg & J. Kröning: Risk analysis of ice throw from wind turbines. DEWI, 2003 122 Róbert-Zoltán Szász, Alexandre Leroyer and Johan Revstedt (2019). Numerical Modelling of the Ice Throw from Wind Turbines, https://www.mdpi.com/2504-186X/4/1/4/pdf-vor
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
215
The results of the calculation also confirm the information from other sources that human life could be endangered by ice chunks of 0.1 kg or more falling from the WTG. However, in the event of unfavourable conditions, the ice chunks could be sent on a trajectory that could result in them landing more than 300 m from the mast.
However, field studies show that most of the ice falling from a WTG does not follow an ideal trajectory, and is primarily dispersed in the immediate vicinity of the WTG. Research in Fin- land123 indicates that 70% of ice chunks fall within 70 m of a station. A study carried out in Switzerland124 also found that 50% of the ice was found in the area under the rotor blades. Field studies carried out by Swedish experts125 show that 75% of the ice chunks found are distributed in the area within the rotor diameter and 1% are distributed beyond 1.5 rotor di- ameters. Also, recommendations issued by the Canadian Wind Energy Association126 state that for fixed installations, the distance of the ice chunks could be up to 50 m around the installation and during ice formation, maintenance personnel in the area should be warned of the risk of ice formation.
Under Latvian climatic conditions, ice formation on wind rotor blades can occur during winter. According to the information provided in references127, the Lode wind farm is located in a region where conditions or ice formation can occur on average from 10 to 20 days per year. This is also confirmed by the wind energy icing atlas maintained by the VTT Technical Research Centre of Finland128, according to which the area of the proposed operation is located in a zone where ice formation is possible up to 3 per cent of the year.
Summarising the above information and calculations, it can be assumed that the area with the highest potential for falling ice hazard is the area below the rotor (for the largest rotor with a diameter of 172 m, a hazard area of 86 m radius around the installation is acceptable). Ice ejection is also possible up to 311 m from the WTG. However, taking into account the probability that the machine will operate at maximum rotational speed, the probability that the machine will be iced and the probability that the ice chunk will be ejected along the ideal trajectory, it can be assumed that the overall probability of an event resulting in an ice chunk hitting a point where a person is located is considered low, and, as indicated in the aforemen- tioned Dutch risk assessment guidelines, only a qualitative assessment should be carried out.
Given that the distance to individual and public buildings is ensured in accordance with the regulatory requirements for spatial planning and is further than the ice throw distance, the risk to human health and life would be limited to people moving or working in the area of the proposed activity. Movement of persons not associated with the operation of WTGs is possible on roads in the vicinity of, or passing through, the area of the proposed operation. Therefore,
123 Andersen E., Börjesson E., Vainionpää P., Undem L.S. (2011) Report – Wind Power in cold climate, WSP En- vironmental for Nordic Energy Research, Norway 124 Ice throw studies, Gütsch and St. Brais, February 8, 2012 http://winterwind.se/2012/download/6b_winter- wind_icethrow_cattin.pdf 125 Göransson, B. Lundén, J., Hultin, K., Aretorn, E., Sundström, J., Odemark, Y., Montgomerie, B. (2017). ICETHROWER – ICE THROWER Evaluation and Risk Analysis Tools. Pöyry Sweden. 126 Garrad Hassan for the Canadian Wind Energy Association (2007), Recommendations for risk assessment of ice throw and blade failure in Ontario, http://www.bape.gouv.qc.ca/sections/mandats/eole_saint-robert-bel- larmin/documents/DA14_b.pdf 127 Elforsk (2008) “Mapping of Icing for Wind Turbine Applications: A feasibility study” 128 http://virtual.vtt.fi/virtual/wiceatla/
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
216
the ice fall distance should be used to determine the distance to roads and areas where per- manent economic activities are carried out.
Safety distances
Summarising the above information on risk areas and proximity distances, the recommended safety distances, considering the station with the most distant potential for exposure (Vestas V172-7.2), are as follows:
- 86 m – economic operation restricted zone where permanent workplaces are not rec- ommended (based on the rotor diameter and the potential for direct exposure to ac- cident effects in the rotor area);
- 252 m – recommended distance from main national roads (based on the recommen- dations of the Belgian risk assessment guidelines);
- 311 m – recommended distance to national and municipal roads, unless technical so- lutions are implemented to mitigate environmental risks (based on the furthest dis- tance of ice fall);
By introducing technical solutions that allow the ice to thaw on the wings to mitigate the en- vironmental risks, the distance can be reduced to:
o 252 m from main national trunk roads;
o 86 m from municipal roads.
- 707 m – high-hazard restricted zone (based on the recommendations of the Belgian risk assessment guidelines);
- 800 m – distance from residential and public buildings (based on cabinet regulation no. 240 of 30 April 2013).
The specified safety distances around a WTG in the Lode wind farm are visualised in Figures 4.12.1 and 4.12.2.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
217
Figure 4.12.1. Safety distances around the WTGs in the Lode wind farm (basic alternative)
The map is referenced to the Latvian coordinate system (LKS-92) in TM projection. The digital map JS Baltija by Jāņasēta SIA was used
as a base.
Wind power plant
Survey area
National road
Restricted zone for economic ac- tivities – 86 m
Distance to main national roads – 252 m
Distance to national and municipal roads (without measures) – 311 m
Distance restrictions for placing in- creased hazard objects – 721 m
Distance from residential and pub- lic buildings – 800 m
National border
Legend
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
218
Figure 4.12.2. Safety distances around WTGs in Lode wind farm (with WTG L_16A and L_17A)
Legend
The map is referenced to the Latvian coordinate system (LKS- 92) in TM projection. The digital map JS Baltija by Jāņasēta
SIA was used as a base.
Wind power plant
Survey area
National road
Restricted zone for economic ac- tivities – 86 m
Distance to main national roads – 252 m
Distance to national and munici- pal roads (without measures) – 311 m
Distance restrictions for placing increased hazard objects – 721 m
Distance from residential and public buildings – 800 m
National border
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
219
4.12.5 Mitigation measures
Modern wind turbines, including the WTG models assessed in the EIA process, are equipped with automatic vibration sensors and safety systems that shut down the plant at certain vibra- tion levels. The system can detect both mechanical damage to the machine and icing on the rotor. Automatic shutdown is also provided for when other operating limits are exceeded, such as rotor speed. WTGs are also equipped with a smoke detection system, which also triggers an automatic safety system if it fails. WTGs are also equipped with a lightning protection sys- tem.
Given that the safety systems installed in the equipment are automatic, according to the Dutch guidelines for quantitative risk assessment129, such systems can prevent the development of an accident and have a probability of failure of no more than 1 in 100, which means that the use of such systems is justified to reduce the risk level of the equipment by at least two orders of magnitude. However, it is important to note that proper maintenance, regular servicing as required by the manufacturer and necessary repairs must be ensured to ensure that the level of risk does not increase during the lifetime of the equipment.
There are no residential or public buildings within 800 m of the proposed WTGs. The realisa- tion of the WTGs L_16A and L_17A is only possible if the Inčkalni residential houses are de- molished.
There are no increased hazard objects within 707 m from the proposed station locations. The potential for hazards from stations should be taken into account when proceeding with the development of the site and when planning for the siting of high-hazard facilities.
There are no national or state main roads within the estimated distance of 311 m from the WTGs. A municipal road is located closer than 311 m from the proposed location of the fol- lowing stations:
- L_03 – 277 m
- L_05 – 266 m;
- L_07 – 200 m;
- L_08 – 99 m;
- L_09 – 98 m.
Taking into account the distances from the WTGs to the municipal roads as indicated above, it is justified to impose on these stations technical solutions to mitigate the environmental risks, i.e. to equip the stations with ice detection systems to ensure that the operation of the station is stopped in the event of ice being detected.
In the case of the implementation of the above mandatory measures, the recommended safety distance to local roads may be reduced to the length of the rotor wing or 86 m.
129 Committee for the Prevention of Disasters, guidelines for quantitative risk assessment, Purple Book CPR 18E, the Hague: Committee for the Prevention of Disasters, 1999
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
220
In addition to the above, including on roads managed by the utility, it is recommended to implement one or a combination of the following solutions130:
- installation of a warning sign about the risk of falling ice chunks (reduces the risk by up to 10 times);
- installation of warning lights connected to an ice detection system and combined with warning signs (risk reduced by up to 100 times);
- closing access roads with physical barriers in the event of ice formation (reducing the risk by up to 100 times);
- Manual restarting of WTGs in the presence of the plant operator.
When considering the location of the proposed stations, the following are located closer than 166 m to watercourses:
- L_05 – 163 m from Krūmiņupīte;
- L_08 – 91 m from Krūmiņupīte;
- L_10 – 95 m from Krūmiņupīte;
- L_12 – 103 m from Veserupīte;
- L_17 – 123 m from Krūmiņupīte.
Given the proximity of the stations to watercourses, the emergency response planning should include appropriate actions and resources to contain and recover chemicals in the event of an accident.
According to cabinet regulation no. 563 of 19 September 2017, on a procedure for identifica- tion and determination of objects of increased danger, as well as civil protection and disaster management planning and implementation, the Lode wind farm is classified as a category C object of increased danger, for which a civil protection plan must be developed. The civil pro- tection plan of WTGs must provide for the arrangements to be made in the event of a fire, specifying the measures to be taken in the event of a fire being detected, i.e. the timely noti- fication of the emergency services and the mobilisation of the necessary resources to contain and eradicate the fire.
Within a distance of 86 m from the station, the movement and operation of the rotor wing does not pose a direct threat to human health and life, however, the establishment of perma- nent workplaces is not desirable. Information must also be provided on the conditions (ice formation) in which it is forbidden to approach the station. Employees who carry out station maintenance must be given safety instructions for station maintenance and, based on the re- sults of a risk assessment of the working environment, be provided with the necessary per- sonal protective equipment.
For physical protection of WTGs, it is necessary to control access to the station and provide measures to prevent unauthorised persons from entering the station.
130 IEA Wind Task 19: International Recommendations for Ice Fall and Ice Throw Risk Assessments (2018)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
221
The safety distances do not affect infrastructure or sensitive sites in the Estonian territory, but in case of the proposed activity, the municipality of the adjacent territory must be informed about the recommendations for the area development, taking into account the risk posed by the WTG.
4.12.6 Evaluation of alternatives
In assessing the technological alternatives for the proposed action, it should be noted that all the plant models assessed in the EIA are equivalent in the context of environmental risk man- agement. Although the areas of impact from plant accidents as well as from ice formation are directly dependent on the size of the plant, in the context of the technological alternatives evaluated these changes are of minor importance and do not represent a significant ad- vantage for the choice of a particular WTG model. It should be noted that the risk assessment has not identified any limiting factors that would render any of the assessed WTG sites infea- sible.
4.13 Communication systems
Wind farms can affect the operation of electromagnetic and radio transmitters and receivers, causing signal interference. The most frequently cited potentially negative impacts are on air navigation equipment used for air traffic control functions, weather radars, marine navigation systems, electronic communications radio networks, terrestrial broadcasting networks131.
4.13.1 General description of the impacts and assessment approach
Aeronautical, maritime navigation systems and meteorological radars are complex systems that are used to perform a variety of functions, such as identifying specific objects by trans- mitting electromagnetic signals and receiving reflected/encoded responses from the target object. Wind turbines built in the vicinity of navigation systems and radars function both as blocking devices (see Figure 4.13.1) and as large reflective objects whose reflected signals can be so strong that they can be misinterpreted and mask weaker reflected signals. It should be noted that any other high-rise structure located within the radar line of sight can have an identical effect. The radar systems currently in widespread use are not able to recognise the signals reflected by WTG.
131 I. Anguloa et al.( (2014). Impact analysis of wind farms on telecommunication services, Renewable and Sus- tainable Energy Reviews, Volume 32, April
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
222
Figure 4.13.1. Example of calculations for a WTG-generated zone where a radar beam is blocked132
Onshore wind farms are not considered a potential threat to the operation of maritime navi- gation systems, but their impact on aviation safety and the operation of weather radars has been demonstrated. For example, the Spanish national meteorological agency (Agencia Esta- tal de Meteorología) has recorded reflections of the weather radar signal from wind farms, which are identified as precipitation zones on a day when no precipitation is observed in the radar area (see Figure 4.13.2). Although the potential impacts of wind farms have been iden- tified, there is currently still no common methodology for assessing these impacts, which is hampered by the variety of navigation and radar systems used and the fact that the assess- ment method may depend on the characteristics of the wind farm site.
Figure 4.13.2. Meteorological radar image, with most of the blue areas being WTG wind farms (source: the Spanish state meteorological institute, Agencia Estatal de Meteorología
(http://www.aemet.es))
132 De la Vega, D., et al. Software tool for the analysis of potential impact of wind farms on radiocommunication services. Proceedings of the 2011 IEEE international symposium on broadband multimedia systems and broad- casting (BMSB), 2011.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
223
Also in the context of other devices transmitting radio signals (radio, television, mobile com- munications, MW/RRL radio relay antennas, etc.), there is a possibility that the operation of wind turbines could cause signal interference to radio communication systems. Studies sug- gest that wind farms can block, fragment and reflect signals from these communication sys- tems. Although, in contrast to aeronautical equipment used for air traffic control functions, the increase in the height of wind farms is more likely to be positive, under certain conditions the impact of wind farms on the quality of communications can still be significant.
4.13.2 Description of the existing situation, possible impacts and mitigation measures
The nearest meteorological radars to the territory of the proposed activity are the radar op- erated by the Latvian Centre for Environmental Geology and Meteorology (LVGMC) installed in the territory of Riga Airport and the radar operated by the Estonian Environment Agency in Sürgavere133. The World Meteorological Organisation (WMO) and the European Meteorologi- cal Services Network (EUMETNET) recommend that certain distances from the weather radar should be observed, where the construction of wind farms should be avoided (up to 5 km for C-band and 10 km for S-band radars), or the construction of wind farms should be coordinated with the owner of the weather radar (up to 20 km for C-band radars and 30 km for S-band radars)134,135. However, more recent studies suggest that the upper limit for C-band radars, i.e. 20 km, should be increased, as impacts can be observed at greater distances136. The Latvian Centre for Environmental Geology and Meteorology has also acknowledged that, given the current station sizes, impacts on radars could be observed at greater distances. The two radars in Latvia and Estonia are located more than 100 km from the planned wind farm. Taking into account the spacing of the weather radars in relation to the proposed wind farm, the technical characteristics of the weather radars, the topography of the site and the height of the pro- posed wind farms, the proposed WTGs are not expected to have a significant impact on the performance of the radars.
The European Organisation for the Safety of Air Navigation (EUROCONTROL), taking into ac- count the International Civil Aviation Organisation (ICAO) guidance on the regulation of con- struction in restricted areas around air navigation facilities used for air traffic management functions137, has developed guidance for air navigation service providers and wind farm devel- opers on the need and procedures for assessing the impact of WTGs on navigation systems. The guidelines define four zones in the vicinity of a primary surveillance radar (PSR) and a secondary surveillance radar (SSR) where the impact of wind turbines should be assessed (see
133 https://www.eumetnet.eu/wp-content/themes/aeron-child/observations-programme/current-activi- ties/opera/database/OPERA_Database/index.html
134 Finnish Meteorological Institute, EUMETNET OPERA PROGRAMME (2004–2006) – Operational programme for the exchange of weather radar information, Final report, 2007
135 Tristant P. (2006). Impact of wind turbines on weather radars band. World Meteorological Organization. CBS/SG-RFC 2006/Doc. 3.1.
136 VINDRAD. Project report v1.0, A tool for calculation of interference from wind power stations to weather radars, 2011
137 European guidance material on managing building restricted areas: 3rd edition, International civil aviation organisation, 2015
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
224
Table 4.13.1). As shown in Table 4.13.1, the position of the WTGs within the radar’s field of view is also an important aspect for air traffic surveillance radars.
Table 4.13.1. Assessment areas for WTG impacts on primary and secondary surveillance ra- dars
Zone Description Impact assessment condition
Zone 1 0–500 m from the radar Safety zone for PSR and SSR installations, in which construction of WTGs would not be allowed
Zone 2 500 m – 15 km from the radar and within its Position Sight Range (PSR),
500 m – 16 km from the radar and within its surveillance surveillance range (SSR)
Detailed assessment area for PSR and SSR radars, in which the construction of WTGs is not allowed un- less a detailed impact assessment is carried out, the results of which demonstrate that no significant ad- verse effects on radar performance are expected and agreed with the air navigation service pro- vider(s).
Zone 3 Beyond a distance of 15 km, but not exceeding the radar’s area of visual range within the radar’s maximum range
Simple engineering assessment area for PSR radars
Zone 4 Within the radar’s maximum range outside its visual range or outside the radar’s maximum range
Acceptable area for PSR and SSR radars where no assessment is required
The closest radar systems to the area of the proposed operation that are used for air traffic management functions are the PSR system installed at Riga Airport, located more than 100 km from the planned wind farm, as well as three SSS systems in Ērgļi (more than 30 km from the planned wind farm), Riga (more than 100 km from the planned wind farm) and Martna in Estonia (more than 200 km from the planned wind farm).
In accordance with ICAO guidelines, the impact of the WTGs planned to be constructed closer than 15 km to radio navigation and landing aids, such as very high-frequency omnidirectional range stations (VOR), instrument landing systems (ILS), on these air navigation systems must be assessed by identifying the significance of the impact and the interference caused to the operation of the system. WTGs situated further should not have an impact on radio navigation and landing aids. There are no radio navigation and landing aids within 15 km of the planned wind farm.
As part of the EIA process, the initiator of the proposed activity has consulted VAS Latvijas gaisa satiksme on the construction of the planned wind farm in the parish of Lode, in the municipality of Valmiera. In its preliminary assessment, VAS Latvijas gaisa satiksme has con- cluded that the planned wind farm will be located more than 16–17 kilometres from LGS radio navigation and radiolocation aids and will not have a significant adverse impact on civil avia- tion radio navigation or radiolocation facilities (see Annex 12).
Airspace surveillance radar systems are also used by the National Armed Forces. Lockheed Martin AN/TPS-77 radars are used for airspace surveillance at the radio-technical observation posts of the National Armed Forces of Latvia in Čalas (~240 km from the area of intended activity), Lielvārde (~140 km from the area of intended activity) and Audriņi (~200 km from the area of intended activity). The NAF also uses TPS-77 MRR mobile radars. AN/TPS-77 radars are also used at all Lithuanian observation posts — Antaveršis, Degučia and Ceikiškės, as well
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
225
as at the observation post in Estonia (Kellavere). Thales Ground Master 403 radar equipment is also used at the observation posts in Estonia (Levalopme and Otepaa). Both the Locheed Martin TPS-77 series and the Thales GM400 series radars are equipped with solutions that ensure their efficient operation in the immediate vicinity of WTG farms138,139. Based on the above, it can be concluded that the planned wind farm will have no impact on the airspace surveillance functions performed by the Armed Forces.
Studies carried out on the impact of WTGs show that the construction of wind farms can affect the quality of TV and radio broadcasting, as well as the quality of mobile broadcasting. Studies suggest that WTGs can block, fragment and reflect the signals emitted by this communication equipment. This interference is considered to be insignificant in areas where the signal quality is good, but may be significant in areas on the periphery of the range of the broadcasting equipment. The ITU, which has carried out a number of studies on the impact of WTGs on the quality of TV broadcasting, including digital terrestrial television, has found that there may be some interference in the vicinity of wind farms, but most of it is insignificant. Significant prob- lems are mostly observed in areas where the quality of the broadcast signal is low. In the area of the planned wind farm and its vicinity, free (see Figure 4.13.3) and pay (see Figure 4.13.3) terrestrial TV broadcasting and radio broadcasting are provided by transmitters installed in Valmiera and Cesvaine, located more than 50 km away from the Lode wind farm study area. The assessment of the available information on the quality of radio and TV broadcasting in the vicinity of the area of intended activity indicates that the quality of broadcasting in the areas surrounding the planned wind farm is currently good.
Figure 4.13.3. Free terrestrial television broadcasting network (LVRTC)
138 https://www.lockheedmartin.com/en-us/products/ground-based-air-surveillance-radars.html
139 https://www.thalesgroup.com/en/ground-master-400
Planned construction site of the Lode wind farm
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
226
Figure 4.13.4. Pay terrestrial television broadcasting network (LVRTC)
The quality of mobile communications, including mobile Internet traffic, could be significantly affected by WTGs in areas with poor quality of communications. Looking at the information published by the largest Latvian mobile operators — LMT, Tele2, Bite — on the quality of com- munications in the vicinity of the area of intended activity, it can be seen that both 3G and 4G mobile Internet is provided in the territory of the planned wind farm and its periphery, with communications available from several transmitters built in the vicinity of the area of intended activity. It should be noted that the quality of communications provided by all operators in the area of intended activity varies from variable to good, which is largely determined by the lo- cation of the transmission towers and the topographical characteristics of the area. The height of transmitters and receivers is an important aspect to be taken into account when assessing the potential impact of the intended activity on the quality of mobile or radiolink communi- cations. The towers on which mobile transmission equipment is located in the vicinity of the area of intended activity are mostly relatively low, lower than the bottom of the planned WTG wing. Thus, the most important part of the WTG that can fragment the communication signal will be higher than the line connecting the communication tower to the service recipient.
Although issues of communication quality are not directly related to environmental impacts, if, after the construction of the wind farm, a reduction in the quality of communication and broadcasting signals is detected due to the operation of the WTG, measures to improve the signal quality should be implemented, the technical solutions of which should be determined on a case-by-case basis.
According to the informative report of the Ministry of Defence “On the development of wind farms in Latvia and operational needs of the defence sector”, the Lode wind farm is located in
Planned construction site of the Lode wind farm
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
227
a zone where its construction is permissible and supported without the application of com- pensatory mechanisms.
4.13.3 Evaluation of Alternatives
In assessing the technological alternatives for the intended activity, it should be noted that all the plant models assessed in the EIA are equivalent in the context of environmental risk man- agement. Although the areas of impact from plant accidents as well as from icing are directly dependent on the size of the plant, in the context of the technological alternatives evaluated, these changes are of minor importance and do not represent any significant advantages for the choice of a particular WTG model. It should be noted that the risk assessment has not identified any limiting factors that would render any of the assessed WTG construction sites infeasible.
4.14 Socio-economic Aspects
This section analyses the socio-economic situation in the vicinity of the intended activity, de- scribing the current situation in terms of population, employment level, economic activity, business indicators, tourism offer and agricultural sector indicators. The main objective of the assessment is to ensure that no significant adverse effects are expected from changes in the use of the territory or impacts on any sensitive uses, and to assess potential impacts on other socio-economic aspects.
4.14.1 Assessment Approach
There are no uniform guidelines in Latvia for assessing socio-economic impacts in EIAs and mitigating potential impacts. The assessment therefore draws on guidance on socio-economic impact assessment in EIA developed in other countries140,141,142, as well as examples of good practice143,144. The purpose of the assessment is to identify and assess the impact of the in- tended activity by analysing available information on relevant socio-economic aspects and providing a qualitative assessment.
Various sources of information have been used to describe the current socio-economic situa- tion, including data from the Central Statistical Bureau (‘CSB’), regional development planning documents, State Employment Agency data, Food and Veterinary Service data, as well as other sources. In the absence of detailed information on future development scenarios, the assess- ment is based on the analysis of historical data and trends. Given that the intended activity also has a potential cross-border impact on part of Estonian territory, Estonian statistics from the Eesti statistik145 database have also been considered.
140https://www.researchgate.net/publication/274254726_Social_Impact_Assessment_Guidance_for_As- sessing_and_Managing_the_Social_Impacts_of_Projects 141 https://reviewboard.ca/file/1024/download?token=1DDLP3jP 142 https://group.vattenfall.com/uk/contentassets/c66251dd969a437c878b5fec736c32aa/best-practice-guid- ance---final-oct-2020.pdf 143 https://infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010101/EN010101- 000229-Document%20Ref%206.11%20LC%20ES%20CH11%20SOCIO.pdf 144 https://infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010112/EN010112- 000547-6.3.3_AyM_ES_Volume%203_Chapter3_Socio-economics_Final.pdf 145 https://www.stat.ee/
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
228
The socio-economic impact of the intended activity will depend on a number of factors, in- cluding the distance of the affected site from the area of intended activity, the sensitivity of the socio-economic aspect, its current characteristics and development trends.
In defining the potentially affected socio-economic aspects, these are considered in three spa- tial impact zones: the zone in the immediate vicinity of the area of intended activity, the zone of local impact and the zone of regional/national impact (see Table 4.14.1). Potential cross- border impacts are also considered in the context of this intended activity.
Table 4.14.1. Spatial impact groups
Area of impact Description Potential impact on socio-economic aspects
Cross-border impacts Potential socio-economic impacts in cross-border areas within the area of influence of intended ac- tivity
- Social services and infrastruc- ture (health care, education, so- cial services)
- Site accessibility
- Natural areas
- Recreational opportunities
- Economy and employment (in- cluding agriculture and tourism)
- Hunting, berry picking, mush- room picking
Regional/national level Regional and national level of im- pact. The purpose of the wider impact area analysis is to consider the overall impact of the in- tended activity on the economy on a regional and national scale
- Economy and employment
- Changes in environmental qual- ity
- Impact on climate change
Local level The administrative division for the municipality of Valmiera de- scribes the changes that will af- fect the population and local economy of the region
- Economy and employment (in- cluding agriculture and tourism)
- Social services and infrastruc- ture (health care, education, so- cial services)
- Site accessibility
- Natural areas and recreational opportunities
Area of direct impact (local level)
Areas in the immediate vicinity of the area of intended activity (within a radius of 2 km from the intended activity)
- Social services and infrastruc- ture (health care, education, so- cial services)
- Site accessibility
- Natural areas
- Recreational opportunities
- Economy and employment (in- cluding agriculture and tourism)
- Hunting, berry picking, mush- room picking
A description of the socio-economic aspects and the associated stakeholders or beneficiaries is provided in Table 4.14.2.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
229
Table 4.14.2. List of socio-economic aspects and related affected parties
Socio-economic aspect Affected parties
Social services (e.g,
education, health) Users of social services
Natural areas and recreational opportu- nities
Users of natural areas and recreational services
Immovable properties, the purpose of use of which is residential
Local residents
Economic operators (including farms, tourism service providers)
Company owners and employees
Employment opportunities Labour force
The sensitivity of the affected parties is classified as high, medium or low, providing a qualita- tive assessment based on pre-defined criteria. The evaluation criteria are shown in Ta- ble 4.14.3.
Table 4.14.3. Criteria for assessing sensitivity
Sensitivity Criteria
High The affected party has limited capacity to react and adapt to changes
Medium The affected party has the capacity to respond and adapt to changes at least partially
Low The affected party has the capacity to respond and adapt to changes, without resulting in a significant impact on their current situation or development pro- spects
In order to assess the significance of the potential effects of the intended activity, both the sensitivity of the affected parties and the extent/scale of the potential impacts are taken into account (see Table 4.14.4). The extent and scale of the impacts have been assessed taking into account the following factors:
- the scale of the potential impact;
- the spatial distribution of the impact;
- the duration and reversibility of the impact;
- the capacity of the local economy to absorb or adapt to the impact.
To assess the impact, a qualitative assessment is provided, covering the type of impact and the assessment of the significance of the impact according to pre-defined criteria. The follow- ing terms are used to describe the type of impact:
- Unfavourable: negative impact on a socio-economic aspect or affected party;
- Insignificant: negligible or minor impact on a socio-economic aspect or affected party;
- Favourable: positive impact on a socio-economic aspect or affected party.
Where favourable or unfavourable impacts are identified, they are assessed in terms of their significance, i.e:
- Minor: small, temporary or very local impact. Not considered significant;
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
230
- Medium: limited impact (in terms of scope, duration or spatial impact) that can be considered significant;
- Significant: a significant impact (in terms of scope, duration or spatial impact) that is more than of local significance (e.g. a significant change with regard to the existing situation or a wide area of impact);
- Substantial: a large and widespread impact of more than local significance. In the
case of unfavourable effects, it should be considered as an exclusion factor.
Table 4.14.4. Assessment of the significance of the impact
Scope and scale of impact
High Medium Low
Large Substantial unfavoura- ble/favourable im- pacts
Significant unfavoura- ble/favourable im- pacts
Medium unfavoura- ble/favourable im- pacts
Medium Significant unfavoura- ble/favourable im- pacts
Medium unfavoura- ble/favourable im- pacts
Minor unfavoura- ble/favourable im- pacts
Low Medium unfavoura- ble/favourable im- pacts
Minor unfavoura- ble/favourable im- pacts
Insignificant impacts
Insignificant Minor unfavoura- ble/favourable im- pacts
Insignificant impacts Insignificant impacts
A combination of quantitative and qualitative approaches is used to assess socio-economic impacts. For example, the assessment of the impact on the local economy is based on the analysis of the existing situation and expert opinion on the potential impact of the intended activity, while the assessment of the impact on the employment level (especially at national and regional level) is based on calculations made in other projects. The assessment of the impact on social services analyses information on the existing infrastructure, including the availability and accessibility of services. Similarly, impacts on natural areas and recreational opportunities are based on the analysis of the existing situation and expert assessment of the likely impacts of the intended activity.
The results of the assessment should take into account the uncertainties inherent in long-term forecasts of economic and social developments, emphasising, inter alia, that the assessment of the existing situation is based on publicly available data, its quality and level of detail, and that expert judgement has been used to assess the potential impacts of the intended activity in situations where quantitative assessments or appropriate assessment guidelines are not available.
Given that the socio-economic impacts of wind farms in Latvia have not been extensively stud- ied, the information contained in this report is largely based on the results of studies carried out in other countries.
Sensitivity of affected partied
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
231
4.14.2 Socio-economic Impact of the Intended Activity on a Regional and National Scale
In assessing the socio-economic impact of the intended activity on a regional and national scale, the positive impacts include investments in the economy, an increase in the number of directly and indirectly related jobs, an increase in the potential for economic activity, an in- crease in the supply of energy on the market, the potential to reduce carbon dioxide emis- sions, and a contribution to the national energy policy objectives.
Attracting investments is an important factor in the development of the national economy, and the construction of wind farms contributes to economic growth as much to attracting investments as any other investments. According to the statistics published by the Bank of Latvia, the stock of direct investments in Latvia has increased gradually over the past 15 years (see Figure 4.14.1). In the last four years, the investment surplus in the sector of professional scientific and technical services has increased sharply — from EUR 268 million in 2019 to EUR 5,279 million in Q3 2023. In addition, the investment balance amounted to EUR 3,798 million in the finance and insurance sector, EUR 3,330 million in the real estate op- erations sector, and EUR 3,280 million in the wholesale and retail trade; repair of motor vehi- cles and motorcycles sector . In the energy, gas and heat supply sector, the investment balance amounted to EUR 891 million 146.
Figure 4.14.1. Changes in the balance of direct investments
The total investments in the case of the Lode wind farm are expected to be around EUR 450 million. Therefore, the planned construction of the wind farm should be seen as a significant investment in the energy sector of Latvia compared to the amount of investments in recent years.
An important aspect to take into account when assessing the impact of the intended activity on the national economy is not only the total amount of investments, but also the job growth
146 https://statdb.bank.lv/lb/Data.aspx?id=131
7466
10223
14741
22564
0
5000
10000
15000
20000
25000
30000
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
D I b
al an
ce , m
ill io
n EU
R
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
232
associated with the investments. In the context of employment, the intended construction of the wind farm is linked to the creation of workplaces both during the construction process and during operation. The additional labour demand will be related to the construction and operation of the wind farm itself, as well as to indirectly related activities such as mining of mineral resources for road construction, concrete production, and transport.
Increasing the amount of energy produced in Latvia can also be seen as a potential benefit for society, which can potentially affect the price of electricity for consumers. In Latvia in 2023, electricity production totalled to 6,150 million kWh, of which 3,795 million kWh were pro- duced by hydroelectric power plants, 2,040 million kWh by cogeneration plants and 269 mil- lion kWh by wind power plants147. Referring to the Electricity Market Overview prepared by
Augstsprieguma tīkls AS, the year 2023 is estimated to have the highest amount of electricity produced from renewable energy resources in the last 13 years, reaching 77.5% of the total amount of electricity produced in the country. While electricity prices in Europe in 2023 have been relatively lower compared to previous years, the Nordic countries have maintained the lowest price levels due to a higher share of generation from renewable energy resources148. In
view of this situation, the Ministry of Economics believes that increasing electricity capacity is a key priority for Latvia to achieve its energy security and independence goals, and that higher electricity prices reduce the competitiveness of Latvia’s economy compared to Northern Eu- ropean countries and reduce the inflow of investments into industry; therefore, it is essential for Latvia to increase the installed electricity capacity to reduce electricity prices and boost competitiveness. Latvia plans to increase the share of renewable energy resources in electric- ity generation by increasing the installed capacity of wind power plants and solar photovolta- ics in line with the capacity of the Latvian electricity transmission grids and developing large- capacity wind farms (at least 800 MW), generating an additional 1,600 GWh of wind energy per year149.
The initiator of the intended activity expects that the total energy output from the 19 wind turbine generators in the planned wind farm could range from 375 to 594 GWh of electricity per year. The construction of the wind farm will not have a significant impact on the price of electricity in Latvia, as the scale of the intended activity in the context of the NordPool region is assessed as negligible; however, any project that involves the installation of new electricity capacity may in the long term contribute to an increase in supply on the market, which could potentially affect the price paid by consumers for electricity use. Overall, the planned con- struction of the Lode wind farm will contribute to achieving Latvia’s national targets for elec- tricity generation from renewable energy resources and climate neutrality.
As the energy produced by WTGs has the potential to replace electricity generated by com- bustion processes, the construction of WTGs and the use of the energy produced thereby are expected to reduce CO2 emissions to the atmosphere, thus reducing the impact of the energy sector on climate change. As shown by the calculation results in Section 4.10, the greenhouse gas emission reductions associated with the introduction of new electricity generation
147 https://stat.gov.lv/lv/statistikas-temas/noz/energetika/tabulas/enb010m-elektroenergijas-razosana-im- ports-eksports-un?themeCode=EN 148 https://www.ast.lv/lv/electricity-market-review?year=2023&month=13 149 On proposals for draft act no. 1509/Lp13, stipulating amendments to the act on protection zones, Ministry of Economics (available at: https://tita- nia.saeima.lv/LIVS13/SaeimaLIVS13.nsf/0/A2A3417067663BCCC225888C002B39EF?OpenDocument)
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
233
technologies and the transfer of the electricity generated thereby to the grid can amount to ~130 t CO2 eq/year. At the same time, by replacing gas (and in some cases creating an alter- native to biomass combustion), the electricity generated by WTGs will have a positive impact on air quality, contributing to the achievement of the targets set in the National Action Plan to Reduce Air Pollution 2020–2030.
Accordingly, on a regional and national scale, the impact of the intended activity is assessed as significantly beneficial.
4.14.3 Socio-economic Impact of the Intended Activity on a Cross-border, Domestic and Local Scale
Description of Administrative Areas
The new administrative boundaries of the municipality of Valmiera entered into force on 1 July 2021, uniting the towns of Valmiera, Beverīna, Burtnieki, Kocēni, Mazsalaca, Naukšēni, Rūjiena and Strenči. The municipality comprises 26 parishes, including the parish of Lode. The administrative centre of the municipality is the city of Valmiera. The total area of the munici- pality of Valmiera is 2,947.9 km2, while the parish of Lode occupies 63.8 km2 of the total area of the municipality, making up 2.2% of the total municipality’s territory. 50% of the municipal- ity’s territory is covered by forests, while 33% is agricultural land. In the southern part of the municipality runs the main national road A3 Inčukalns-Valmiera-Estonia border (Valka) and the railway line Riga-Valka.150
Population and Characteristics
The total population of the municipality of Valmiera at the beginning of 2023 (on 1 January 2023) according to the data of the Central Statistical Bureau is 50,464 (Figure 4.14.2), with approximately 0.6% of the municipality’s population resides in the parish of Lode.
At the beginning of 2023, 67% of the population of Valmiera Municipality live in urban (densely populated) areas151, and 33% in rural (sparsely populated) areas. However, when looking at the parish of Lode, 100% of the population lives in rural areas, which is due to the fact that the largest settlements in this parish are villages. In general, the population of both Valmiera municipality and the parish of Lode tends to decrease. In 2023, the population den- sity in the municipality of Valmiera was 18 people per 1 km2, compared to 5 people per 1 km2
in the parish of Lode.
150 Local government of the municipality of Valmiera. 2022. Valmiera municipality sustainable development strategy 2022–2038 Available at https://www.valmierasnovads.lv/content/uploads/2022/11/ilgtspeji- gas_att_strat_valmieras_nov.pdf 151 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__POP__IR__IRS/IRS051/
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
234
Figure 4.14.2. Population changes in Valmiera municipality and the parish of Lode152
Due to the intended activity being located in the border area, the part in Estonia, Viljandi county (municipality) and the parish of Mulgi, which borders the parishes of Ipiķi, Vilpulka and Lode in Latvia, are considered. Viljandi county covers an area of 3,422 km2153, which is about 475 km2 larger than Valmiera municipality. According to Estonian statistical data, the popula- tion of Viljandi county was estimated at 45,411 inhabitants in 2022 (Figure 4.14.3), while Mulgi parish has about 15% of the county’s population.
Figure 4.14.3. Population changes in Viljandi county and Mulgi parish154
Local economy and employment
Based on the Central Statistical Bureau (CSB) data on the share of jobseekers in Valmiera mu- nicipality in the 2011–2022 period (Figure 4.14.4), it is seen that the unemployment rate in general has more than halved since 2011. In 2019, the unemployment rate was at its lowest,
152 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__POP__IR__IRD/RIG010/ 153 https://andmed.stat.ee/en/stat/rahvaloendus__rel2011__rahvastiku-paiknemine__elukoht-ja-soo-va- nusjaotus/RL006 154 https://andmed.stat.ee/en/stat/rahvastik__rahvastikunaitajad-ja-koosseis__rahvaarv-ja-rahvastiku-koos- seis
291 284
329 329
303 304 298
288
48000
49000
50000
51000
52000
53000
54000
260
270
280
290
300
310
320
330
340
2016 2017 2018 2019 2020 2021 2022 2023
Po pu
la tio
n
Valmieras novads Lodes pagasts
7626
7506 7436 7460
7372
7026 7086
6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700
44000
44500
45000
45500
46000
46500
47000
47500
2017 2018 2019 2020 2021 2022 2023
Viljandi apriņķis Mulgi pagsts
Lode parish Valmiera municipality
Viljandi county Mulgi parish
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
235
followed by a slight increase in the share of jobseekers. In general, the changes in the unem- ployment rate in Valmiera municipality are in line with the trends in the country 155 (Fig- ure 4.14.4).
Figure 4.14.4. The share of jobseekers and unemployed persons (%) in Valmiera municipality and the parish of Lode among economically active population aged 15 to 74
According to the data of the State Employment Agency156 on the unemployment rate in mu- nicipalities (situation on 31 January 2023), 674 unemployed people, or 3.8% of the working age population, were registered in Valmiera Municipalities, while the national unemployment rate was 4.6%. Of all the registered unemployed in Valmiera municipality, women make up more than half (54%), while men make up 46%, and the highest number of unemployed by age group is from 60 years and over (100 registered unemployed persons). Looking at the data by duration of unemployment, in Valmiera municipality the largest share (76%) of registered unemployed people have a status of up to 6 months, while 17% of unemployed people have a duration of between 6 and 12 months, followed by 6% of unemployed people with a status of between 1 and 3 years, while 3 years and more are registered in 1% of cases.
Estonian statistical data (Figure 4.14.5) show that the national trends are also noticeable in Viljandi county and Mulgi parish. In Viljandi county in 2023, the total number of registered unemployed reached 1,359, of which 49.7% are women and 50.3% men, while among both sexes the highest number of registered unemployed is in the 25–54 age group.
155 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__EMP__NBBA__NBB1/RIG090/ 156 https://www.nva.gov.lv/lv/2023gads
0,0
5,0
10,0
15,0
20,0
25,0
2011 2017 2018 2019 2020 2021 2022
Sh ar
e of
jo bs
ee ke
rs
Lodes pagasts Latvija Valmieras novadsValmiera municipality Latvia Lode parish
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
236
Figure 4.14.5. Number of registered unemployed persons in Estonia, Viljandi county and Mulgi parish157
According to the CSB data on economically active companies in municipalities before the ad- ministrative territorial reform (hereinafter referred to as ‘ATR’) in 2021, Rūjiena municipality, which includes the territory of the parish of Lode, is considered. Between 2013 and 2020 (Fig- ure 4.14.6), the total number of economically active companies in Rūjiena municipality was 332158. In Rūjiena municipality, there was a steady decrease in the number of registered com- panies from 2016 to 2020. In contrast, after the ATR, the territory of the parish of Lode was annexed to Valmiera municipality (including the town of Valmiera), which, according to the CSB data, significantly exceeds the number of economically active companies in 2022159 — 2,494, with the majority of them representing the market sector.
157 https://andmed.stat.ee/en/stat/sotsiaalelu__tooturg__tooturu-uldandmed__aastastatistika/TT4645 158 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS010/ 159 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS011/
178 127 160
219 186 238
0
10000
20000
30000
40000
50000
60000
0
200
400
600
800
1000
1200
1400
1600
2018 2019 2020 2021 2022 2023 Es to
ni a,
n um
be r o
f r eg
is te
re d
un em
pl oy
ed
pe rs
on s
Vi lja
nd i a
nd M
ul gi
, n um
be r o
f r eg
is te
re d
un em
pl oy
ed p
er so
ns
Viljandi apriņķis Mulgi pagasts Igaunija
370
357
369 370
362
343 343
332
310
320
330
340
350
360
370
380
2013 2014 2015 2016 2017 2018 2019 2020
N um
be r o
f c om
pa ni
es
Estonia j ndi county lgi parish
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
237
Figure 4.14.6. Economically active companies in the territory of Rūjiena municipality before the ATR in 2021160
According to the CSB data on the economically active companies in the market sector in the municipalities by company size groups, in 2022 Valmiera municipality (after the ATR) had a total of 2,348 registered companies, where 83 companies employ 1–9 employees and 36 com- panies 10–19 employees. The total number of companies in which the number of employees increases from 20 to 49 decreases to 22, while 14 companies have 50 to 249 employees. No company fits into the category of 250 or more employees161.
In 2022, there were 85 economically active companies registered in Valmiera municipality per 1,000 inhabitants, 39 of which were merchants162. Comparing the situation in Valmiera munic- ipality to the national average indicators, it can be concluded that the number of active com- panies in Valmiera municipality is lower than in Latvia (85 in Valmiera municipality and 93 in Latvia as a whole), and the number of merchants is relatively lower than the national average indicator (39 in Valmiera municipality and 53 in Latvia as a whole). Compared to the category of other companies, Valmiera municipality (46 companies) exceeds the average international of Latvia as a whole (40 companies).
In dividing the number of active companies by type of activity in 2022163 throughout the ter- ritory of Valmiera municipality (after the ATR), the largest number of companies was regis- tered in the agriculture, forestry and fisheries sector, totalling to 960 companies, which are represented by the following:
- 813 companies — crop and livestock production, hunting and related auxiliary activi- ties;
- 136 companies — forestry and logging;
- 11 companies — fisheries.
According to Estonian statistical data, Viljandi county in 2021 had 3,275 registered active com- panies, most of which (1,522 companies) employ 1 to 4 employees, with the next largest cat- egory of companies by number of employees being those with no employees (1,388 compa- nies). The situation is relatively similar for the number of companies with 5 to 9 employees, which makes a total of 176 companies, and for the number with at least 10 employees, which is 189 companies164.
Considering the areas of activity of active companies in Viljandi county, in 2021 the most com- mon type of business was construction (563 companies); respectively, the next sector was represented by wholesale and retail trade related to the repair of cars and motorcycles
160 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS010/ 161 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS031/ 162 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS041/ 163 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS031/
164 https://andmed.stat.ee/et/stat/majandus__majandusuksused__ettevetluse-demograafia/ER061U/ta-
ble/tableViewLayout2
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
238
(511 companies). The third most common type of business by number was professional sci- entific and technical activities, with 382 companies165.
Agriculture and Forestry
According to the latest available data (on 1 January 2023)166, Valmiera municipality is mostly covered by forest, 147,455 ha, accounting for 50% of the total territory of the municipality. The second most common type of land use is agricultural land (arable land, orchard, meadow, pasture), accounting for 33% of the total territory of the municipality. Most of the agricultural land is arable land, 69,443 ha, which accounts for 24% of the territory of Valmiera municipal- ity. More detailed information on the number and types of agricultural companies active in the municipality is provided in the sub-section on the local economy and employment.
Information on the number of registered livestock in Valmiera municipality is compiled using information from the agricultural data centre (ADC; see Table 4.14.5).
Table 4.14.5. Number of registered livestock in the parish of Lode in Valmiera municipality on 1 January 2023
Te rr
it o
ry
A n
im al
s
C att
le
P ig
s
Sh e
e p
G o
at s
H o
rs e
s
P o
u lt
ry
R ab
b it
s
Fu r-
b e
ar in
g an
im al
s
B e
e c
o lo
n ie
s
A q
u ac
u lt
u re
O th
e r
sp e
ci e
s
Lode Par. 1,542 766 1 133 2 9 253 29 0 349 0 0
Valmiera Mun. 51,621 20,174 964 4,116 235 659 17,030 1,496 1,475 5,222 11 239
According to the food and veterinary service registers on 14 February 2024, Valmiera munici- pality has no registered organic farming companies in Lode parish167.
Tourism Infrastructure
For the assessment, information on the tourism sector in both Latvia and Estonia has been collected, where in the Latvian part information sources such as the websites of Valmiera mu- nicipality168 and Valmiera tourism information centre169 have been used, while in the Estonian part tourism sites have been looked at on the official tourism information website170 for cul- tural sites, activities, catering services and accommodation within 10 km of the research area, and information publicly available on OpenStreetMap and dodies.lv maps has also been used. The location of the accommodation places was obtained from websites such as Google Maps,
165 https://andmed.stat.ee/et/stat/majandus__majandusuksused__ettevetluse-demograafia/ER051U/ta-
ble/tableViewLayout2
166 State Land Service, https://www.vzd.gov.lv/lv/zemes-sadalijums-zemes-lietosanas- veidos?utm_source=https%3A%2F%2Fwww.google.com%2F 167 FVS — Organic farming companies registered with control authorities, the list updated on 14.02.2024: https://registri.pvd.gov.lv/cr/dati?q=Re%C4%A3istr%C4%93tie+biolo%C4%A3isk%C4%81s+agricul- ture%C4%ABbas+on%C5%86%C4%93mumi 168 https://www.valmierasnovads.lv 169 https://visit.valmiera.lv 170 https://www.visitestonia.com/lv
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
239
Airbnb.com and Booking.com171. The research area of the planned wind farm is close to cul- tural and historical sites, as well as places of sightseeing and recreation. The closest points of sightseeing to the area of the intended activity are shown in Figure 4.14.7. More detailed in- formation on them is provided in Sections 4.6 and 4.7 of the Report.
Figure 4.14.7. Tourist attractions in the vicinity of the area of intended activity
According to the CSB data on hotels and other tourist accommodation places in Valmiera mu- nicipality for the 2022–2023 period172, there have been no significant changes in the number
171 Information accessed on 20 February 2024 172 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__TU__TUV/TUV050m
The map is referenced to the Latvian coordi- nate system (LKS-92) in TM projection. Open-
StreetMap map used as a basis
Places of recreation
Natural object
Cultural and historical heritage (Estonia)
Cultural and historical monuments (Latvia)
Museum
Accommodation
Swimming pool
Assessment territory
National border
Legend
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
240
of accommodation places (see Table 4.14.6), but the number of rooms and beds has increased over the year. The number of people served in Valmiera municipality has almost doubled — the number of local guests has increased and the number of foreign guests has increased six- fold. Overall, the end of January 2023 is assessed positively, as the number of overnight stays has almost doubled, and the number of overnight stays by foreign guests, which increased about five times in Valmiera municipality, also stands out.
Table 4.14.6. Hotels and other tourist accommodation in Valmiera municipality (after the ATR in 2021)173
End of January 2022 End of January 2023
Number of accommodation places (end of period)
33 39
Number of rooms (end of period) 328 401
Number of beds (end of period) 974 1,173
Persons served 1,188 2,490
Local guests served 1,061 1,705
Foreign guests served 127 785
Overnight stays 2,243 4,559
Overnight stays by local guests 1,985 3,026
Overnight stays by foreign guests 258 1,533
For comparison of Valmiera municipality, Table 4.14.7 shows Viljandi county, which surpasses Valmiera municipality in terms of characteristics presented in the tables, i.e. the number of registered accommodation places in the Estonian county in 2022 is 26 places higher and the number of rooms is almost twice as high as in Valmiera municipality. There is a significant difference in the number of persons served and the number of overnight stays, more specifi- cally, in 2022, the number of persons served in Viljandi county is 54 times higher, exceeding 60,000 persons, while the number of overnight stays exceeds 100,000. This is mainly due to the significantly different areas of Valmiera municipality and Viljandi county.
Table 4.14.7. Hotels and other tourist accommodation in Viljandi county in 2021 and 2022174
2021 2022
Number of accommo- dation places
54 59
Number of rooms 612 645
Number of beds 1,795 1,933
Persons served 50,472 64,145
Overnight stays 89,239 104,847
The nearest tourist accommodation to the area of intended activity is approximately 6 km from the research area (Figure 4.14.7), therefore impacts on such tourist accommodation places are expected to be insignificant:
173 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__TU__TUV/TUV050m 174 https://andmed.stat.ee/en/stat/majandus__turism-ja-majutus__majutus/TU110/table/tableViewLayout2
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
241
- An accommodation place and an inn in Estonia 6.06 km from the research area called ‘Mulgi Kõrts’;
- The guest house ‘Koņu dzirnavas’ is located in 8.32 km from the research area.
According to the CSB data on economically active companies by their main areas of activity175,
in 2022 the total number of accommodation and catering companies in Valmiera municipality was 42, with 21 accommodation companies and 21 catering companies registered.
Conformity of the intended activity to the spatial planning of local governments
Information on the conformity of the area of intended activity to the local government spatial plan is provided in Section 3.1.
4.14.4 Impact on Socio-economic Aspects during Construction
A description of the works is provided in Section 3.4. During the construction of the Lode wind farm, local residents may experience temporary disturbances due to construction noise, vi- brations and traffic impacts from construction machinery and vehicles. Visual landscape changes are expected. Temporary changes in air quality (e.g. disturbances related to construc- tion dust) may also occur. However, all disturbances, with the exception of landscape changes, are transitory and temporary. While the impacts of the construction process cannot be pre- vented, they can be significantly reduced through planning and organisation of construction works. Before construction works start, the customer, the contractor and the relevant local authority must plan works and mitigation measures in good time and inform residents, traffic participants and other involved parties.
Road traffic restrictions will apply to the construction sites and the road and street network in their vicinity. The intended activity may not result in any denial of access to any property or site within the respective area of works. In order to ensure access to properties and sites and the possibility to bypass or cross the construction or reconstruction work area, traffic organi- sation schemes will be prepared during both the development of the technical design and the execution of the works, taking into account the working methods and technologies used by the contractor.
The construction works may affect public safety and/or the perception of public safety. Con- struction sites must be duly fenced off to prevent public access.
Overall, taking into account the duration, scope and spatial distribution of the impact and the number of people affected, minor unfavourable impacts on the accessibility of the area and the quality of life during construction are expected. At the same time, it should be noted that the construction of the wind farm can have a positive impact on the economy and employ- ment levels in the short term, including by creating new construction jobs, as well as promot- ing specific knowledge and skills development opportunities in the short and long term. In this respect, the impact is assessed as a minor favourable impact.
4.14.5 Impact on Socio-economic Aspects during Operation
During the operation of the Lode wind farm, a number of socio-economic impacts are ex- pected, which will be analysed in this subsection.
175 https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__ENT__UZ__UZS/UZS031/
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
242
Local economy and employment
During the operation period of the wind farm, labour demand is expected to be relatively low at the local level, i.e. the number of new jobs planned will be small compared to the national level. The sensitivity of the affected parties is assessed as low, the magnitude and scale of the impact — as low, and consequently minor favourable impacts are expected.
Impact on Local Infrastructure
The changes to the road infrastructure resulting from the intended activity, as well as the ex- tent of the impacts, are described in Section 3. Overall, it can be concluded that the impact of the intended activity on infrastructure during construction will be temporary and insignificant, while the impact during operation will be rather positive, given that the intended activity is related to the improvement of access roads and the construction of new road sections. It is expected that the construction of the wind farm could lead to an increase in traffic volumes in the national road network and the municipal road network in the vicinity of the area of intended activity, as well as temporary traffic restrictions during the transportation of WTGs (see more in Section 3). No traffic restrictions are planned during the operation of the wind farm.
The construction or operation of the wind farm is also not expected to affect the operation of other infrastructure objects, such as electricity supply systems, water supply, or have a direct impact on other economic activities in the vicinity of the planned wind farm. It is expected that the construction work organisation plan will be agreed with all users of the territory in order to avoid, as far as possible, the imposition of restrictions that could prevent other eco- nomic activities from taking place in the vicinity of the WTG construction sites. During the operation of the wind farm, it is not envisaged that restrictions on the above-mentioned eco- nomic activities outside the WTG construction sites have to be imposed.
During the operation of the Lode wind farm, no impacts on access to social services, sports, recreational and cultural services are foreseen, which may be negatively affected by the bar- rier effect. At the same time, it should be noted that the new access roads built during the construction of the Lode wind farm and the reconstruction of existing roads have the potential to improve access to these services.
Overall, the sensitivity of the affected parties is assessed as low at the local level and medium at place-specific level, and the magnitude and scale of the impact as low. Accordingly, the impact is assessed as a minor favourable impact.
Agriculture, Forestry, Hunting Resources
In Latvia, no studies have so far been carried out to analyse the impact of WTGs on livestock, forest animals and beekeeping. A survey of scientific studies in other countries shows that relatively little similar studies have been carried out elsewhere. Some media have published on the negative effects of WTGs on farm animals and insects, but the authors have not tested the hypotheses put forward in the publications using scientifically accepted methods.
There are no livestock sheds in the area of the planned wind farm, nor is the territory used for livestock grazing, nor are there any organic farms. Information on the number of livestock registered in Valmiera municipality is summarised in Section 4.14.3.1.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
243
Scientific studies examining the impact of wind farms on beekeeping have been carried out in Poland176. One study compared the health, activity and productivity of bees in populations located inside and outside a wind farm over two years. The results of the study show that the presence of wind farms does not affect bee populations. Similarly, a report published in 2018177 shows that no significant differences can be identified when comparing the population size and species diversity of different pollinators, including bees, inside and outside wind farms. A 2020 report commissioned by the European Commission found that the development of wind farms could have negative impacts on pollinators through habitat loss, degradation and fragmentation associated with the construction of wind turbines178. These negative im- pacts can be mitigated through post-construction rehabilitation measures and other support for biodiversity in the wind farm area.
In analysing the potential impacts of wind turbines on livestock and wildlife, some studies have shown that noise from wind turbines can affect communication between animals, affect- ing their reproduction. Stressful noise can also contribute to an increase in cortisol levels, making animals more susceptible to infections and diseases. Such impacts depend on the dis- tance of the habitat from the wind farms179. In 2013, a study was published by a group of Polish scientists on the effects of WTGs on weight gain and cortisol levels in domestic geese Anser anser f. domestica180. The study showed that the average cortisol level was significantly higher in geese kept 50 m from the WTG (34.12 ng/mL (week 17)) than in geese kept 500 m from the WTG (12.61 ng/mL (week 17)). It was also found that the weight gain was higher in geese kept 500 m from the WTG (8.31 kg (week 17)) than in geese kept 50 m from the WTG (7.45 kg (week 17)). The authors of the study point out that there are significant differences in the individual scores of the test group birds, suggesting an individual-specific response to the stressor. The authors attribute the increased cortisol levels and reduced weight gain to the noise from the WTGs. The study does not indicate normal cortisol levels and weight gain, which limits the ability to assess the potential role of stressors. It should be noted that the wind generation technologies available in 2013 were significantly different from those envis- aged for the intended activity. Based on the information of the state environmental service on animal camping sites for which a category C permit has been issued181 in accordance with cabinet regulation no. 1082, on procedures by which polluting activities of category a, b and c will be declared and permits for the performance of category a and b polluting activities will be issued182, three category C polluting activities have been identified in the vicinity of the wind farm assessed within the distances specified in the study: three animal camping sites within approximately 1.6 km from the research area.
176 Karwan, D., Wpływ farmy wiatrowej na wartość użytkową pszczoły miodnej, 2018 177 Pustkowiak S, Banaszak-Cibicka W, Mielczarek ŁE, Tryjanowski P, Skórka P. The association of windmills with conservation of pollinating insects and wild plants in homogeneous farmland of western Poland. Environ Sci Pollut Res Int. 2018;25(7):6273-6284. doi:10.1007/s11356-017-0864-7 178 https://solar-ew.nl/wp-content/uploads/2021/02/Arcadis_EnergyGuidance_SolarEner- gyWorks_A4_05_11_compressed.pdf 179 Hansen, C. & Hansen, K. Recent Advances in Wind Turbine Noise Research, 2020 180 Mikolajczak et al., Preliminary studies on the reaction of growing geese (Anser anser f. domestica) to the proximity of wind turbines, Polish Journal of Veterinary Sciences Vol. 16, no. 4, 2013 181 https://registri.vvd.gov.lv/piesarnojoso-darbibu-vietu-karte accessed 20 April 2024. 182 https://likumi.lv/ta/id/222147-kartiba-kada-piesakamas-a-b-un-c-kategorijas-piesarnojosas-darbibas-un- izsniedzamas-atlaujas-a-un-b-kategorijas-piesarnojoso-da
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
244
Taking into account the small loss of agricultural land, the expected low impact on livestock and the spatial distribution of the expected impacts, the impact of the intended activity on agriculture is assessed as insignificant. Similarly, impacts on forestry and hunting resources are assessed as insignificant.
Tourism infrastructure
The planned wind farm has the potential to have negative impacts on economic activities re- lated to tourism and recreation. Currently, it is relatively difficult to predict the economic im- pact of the planned wind farm on nearby recreational facilities, as there is a lack of such stud- ies in Latvia and Estonia. Studies carried out in other European countries and around the world show that:
- in studies where visitors to recreational facilities were surveyed before the planned wind farms were built, some visitors indicated that they would not visit the recrea- tional facilities after the wind farms were built;
- studies analysing the possible decrease in the number of customers for recreational services after the construction of wind farms have not shown that the construction of WTGs has had a significant negative impact on the turnover of recreational facilities183.
In some cases, the results of the studies indicate that tourists with prior knowledge of wind turbines would be willing to pay more to live with a view of a wind farm during their recreation and rated the development of wind farms positively184,185,186. There are also studies of resi- dents living in close proximity to wind farms who have created new and unique uses for wind farm infrastructure and who are positive about this type of development187. At the same time, the results of other studies188,189,190 indicate that where nature- and landscape-based tourism is particularly important for the local economy, the development of wind farms can become a competing type of land use. Summarising the results of the studies, it can be concluded that factors such as the existing use of the area of intended activity (undeveloped environment or economically developed area), the visibility of wind farms, the distance to and number of wind
183 Polecon Research, The Impact of Wind farms on Tourism of New Hampshire, 2013; C. Aitchison, Torism im- pact of wind farms, The University of Edinburgh, 2012; V. Braunova, Impact study of wind power on tourism on Gotland, Uppsala University, E.Tverijonaite et al., How close is too close? Mapping the impact area of renewable energy infrastructure on tourism, 2022. 184 S. Trandafir, How Are Tourists Affected By Offshore Wind Turbines? A Case Study Of The First U.S. Offshore Wind Farm, 2020 185 T.Smythe, Beyond the beach: Tradeoffs in tourism and recreation at the first offshore wind farm in the United States, 2020 186 T. Broekel & C. Alfken, Gone with the wind? The impact of wind turbines on tourism demand, 2015 187 C. E.Pavlowsky & T. Gliedt, Individual and local scale interactions and adaptations to wind energy develop- ment: A case study of Oklahoma, USA, 2021 188 A. D. Sæþórsdóttir & R. Ólafsdóttir, Not in my back yard or not on my playground: Residents and tourists’ attitudes towards wind turbines in Icelandic landscapes, 2020 189 L. Voltairea & O.P. Koutchade, Public acceptance of and heterogeneity in behavioural beach trip responses to offshore wind farm development in Catalonia (Spain), 2020 190 T. Broekel & C. Alfken, Gone with the wind? The impact of wind turbines on tourism demand, 2015
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
245
farms, the level of knowledge and awareness about the impact of wind farms and renewable energy in general play an important role in people’s perception of wind farms191,192,193.
Insignificant impacts on tourism infrastructure are expected due to the small magnitude and scale of the impact, as well as the location of accommodation and tourist facilities in the vi- cinity of the planned activity, which is likely to be related to the Latvian-Estonian border and historical development.
Impact on Real Estate
The analysis of the impact of the intended activity on real estate is based on two aspects: the preservation of the residential or public function of the real estate and the expected impact on real estate prices.
In accordance with cabinet regulation no. 240 of 30 April 2013, on general regulations for the planning, use and building of the territory, the construction of wind turbine generators is not allowed closer than 800 m from residential and public buildings. According to the information available in the information system of the state cadastre of immovable properties on the main type of use of the building, there are no residential and public buildings in the study area of the planned Lode wind farm. Similar restrictions applied to the retention of potential future residential or public functions within a certain distance of the WTGs. However, the binding regulations of the municipality of Mulgi in Estonia do not set minimum distances from the WTGs to residential or other areas.
Another potentially negative aspect of the impact of wind farms that is being studied is the impact on property values. Analysing the studies carried out so far on the impact of wind farms on property values, it should be noted that no such studies have been carried out in Latvia so far, therefore the assessment is based only on the results of studies carried out in other countries. Most of the studies carried out abroad are based on the quantitative analysis of changes in property values, using retrospective analysis methods, mainly analysing the re- lationship between the distance and property value, and between the view and property value. The results of the studies show that the construction of wind farms does not have a negative impact on the value of agricultural land, forestry land and land for industrial devel- opment, which is largely due to the fact that the construction of wind farms does not affect the use of this type of property, which is considered to be an important factor in determining the market price. The construction of wind farms has the potential to affect the value of prop- erties whose primary use is residential.
191 V. Westerberg et al, Offshore wind farms in Southern Europe – Determining tourist preference and social acceptance, 2015 192 B. Frantál & J. Kunc, Wind turbines in tourism landscapes: Czech Experience, 2011 193 D. L. Bessettea & S. B.Millsb, Farmers vs. lakers: Agriculture, amenity, and community in predicting opposition to United States wind energy development, 2021
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
246
A number of studies194,195,196,197,198,199,200,201 do not find a statistically significant impact of wind farms on the market value of real estate in the residential segment of the market. At the same time, the authors of other studies202,203,204,205,206,207,208,209 have found statistically significant correlations between the construction of wind farms and the depreciation of the market value of real estate in the residential segment of the market. Although the authors of the studies seem to come to different conclusions, it can be argued that the construction of wind farms in the vicinity of residential properties does not increase the market value of those properties. The analysis of the results of the studies carried out did not identify any study that found a positive change in the market value of real estate immediately after the construction of wind farms. The results show that there are a number of specific factors that can influence the market value of real estate in the vicinity of a wind farm — distance to the wind farm, height of the WTG, number of visible WTGs, quality of the landscape near the wind farm, quality of the real estate, total number of wind farms in the region, public attitudes towards wind energy projects and other factors.
Although the number of studies on the impact of wind farms on real estate market values is relatively large and the studies mostly use comparative quantitative analysis methods, it is not possible to predict from the studies the impact of operations on housing market values in the
194 Sims, S., Dent, P., Oskrochi, R., Modelling the Impact of Wind Farms on House Prices in the UK. International Journal of Strategic Property Management, 12, 2008 195 Laposa, S., Mueller, A., Wind Farm Announcements and Rural Home Prices: Maxwell Ranch and Rural North- ern Colorado. Journal of Sustainable Real Estate, 2, 2010 196 Canning, G., Simmons, L. J., Wind energy study - Effect on real estate values in the municipality of Chatham- Kent, Ontario. Consulting Report prepared for the Canadian Wind Energy Association, Ontario, Canada, 2010 197 Hoen, B., Wiser, R., Cappers, P., Thayer, M., Sethi, G., Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices Authors. Journal of Real Estate Research, 33, 2011
198 Hoen, B., Wiser, R., Cappers, P., Thayer, M., Sethi, G., The impact of wind power projects on residential prop- erty values in the United States: A multi-site hedonic analysis, 2014
Lang, C., Opaluch, J., Sfinarolakis, G., The Windy City: Property Value Impacts of Wind Turbines in an Urban Setting. Energy Economics, 44, 2014 199 Urbis Pty Ltd, Review of impact of wind farms on property values, 2016 200 Hoen, B., Atkinson-palombo, C., Wind Turbines, Amenities and Disamenities: A Study of Home Value Impacts in Densely Populated Massachusetts. Journal of Real Estate Research, 38, 2016 201 Castleberry, B., Greene, J., Wind power and real estate prices in Oklahoma. International Journal of Housing Markets and Analysis, 11, 2018 202 Sims, S., Dent, P., Property stigma: wind farms are just the latest fashion. Journal of Property Investment and Finance, 25, 2007 203 Heintzelman, M., Tuttle, C., Values in the Wind: A Hedonic Analysis of Wind Power Facilities. Land Economics, 88, 2011 204 Gibbons, S., Gone with the wind: Valuing the visual impacts of wind turbines through house prices. Journal of Environmental Economics and Management, 72, 2015 205 Sunak, Y., Madlener, R., The impact of wind farm visibility on property values: A spatial difference-in-differ- ences analysis. Energy Economics, 55. 2016 206 Dröes, M., Koster, H., Renewable energy and negative externalities: The effect of wind turbines on house prices. Journal of Urban Economics. 96. 2016 207 Eichholtz, P., Kok, N., Langen, M., Clean Electricity, Dirty Electricity: The Effect on Local House Prices. SSRN Electronic Journal, 2017 208 Frondel, M., Kussel, G., Sommer, S., Local Cost for Global Benefit: The Case of Wind Turbines, 2019 209 Holm, P., Tyynilä, J.. Impact of wind power on residential property prices (Tuulivoima -vaikutus asuinki- inteistöjen hintoihin), 2021
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
247
vicinity of the planned wind farm. The range of changes in real estate market values identified in the studies is very wide. As mentioned above, a large number of studies do not find a link between the construction of WTGs and the market value of real estate. One of the most com- prehensive studies carried out in Europe210, which analysed housing prices in the vicinity of wind farms in the Netherlands between 1985 and 2019 (around 290,000 transactions valued), found that housing prices in areas within 2 km of a wind farm fell by an average of 1.6%. A study carried out in the UK211 found that the market value of real estate in areas within 2 km of a WTG decreased by around 5–6%, and in areas within 2-4 km of a WTG by less than 2%. A study carried out in Germany212 found that in areas where WTGs were very close to residential houses (closer than 2 km), WTGs were visible from the central part of the building’s courtyard or where WTGs created a significant contrast in the landscape and the number of visible WTGs was at least 8, property prices could decrease by up to 17.9%. One of the studies carried out in Sweden213 found a strong and statistically significant effect of distance to wind turbines on property values. In particular, the value of dwellings in the immediate vicinity of WTGs was reduced by up to 20% in some cases, by 9–14% at a distance of 2–4 km from WTGs, with no value reduction at a distance of 6–8 km.
Some researchers suggest that the impact of WTGs on the market value of real estate could be sporadic, affecting only specific properties that are mainly used for recreation or have cul- tural and historical value. The results of a study carried out in Greece214 on real estate price developments on two relatively similar and relatively small islands, Euboea and Cephalonia, where a large part of real estate was used for recreational purposes, show that the location of WTGs can also influence the market price. In Cephalonia, where the total installed capacity of WTGs is higher but the wind farms are compact, no statistically significant change in real estate market values could be identified over the last 10 years, while in Euboea, where the plants are spread over a wider area in several small groups, a statistically significant decrease in real estate market values can be observed in areas up to 2 km away from the WTGs.
Several studies analysed have found that the impact of WTG wind farms on real estate values is more likely to be a deterrent to the growth of real estate values than a direct depreciator. This is shown, for example, by a study carried out in Australia215, which also analysed re-sales and concluded that real estate values depend to a large extent on the overall demand in the region, as well as on other market fluctuations that are not directly related to WTGs. Factors such as access to services and transport, economic growth and employment in the region, as well as changes in legislation can have a more significant impact on real estate values.
Although the almost 20% change in property market values identified in a study carried out in Sweden216 in areas with significant visual impact is obviously very significant, looking at the Central Statistical Bureau data on dwelling price indices in Latvia over a 10-year period (see
210 Dröes, M., Koster, H., Wind turbines, solar farms, and house prices. Energy Policy, 155. 2021 211 Gibbons, S., Gone with the wind: Valuing the visual impacts of wind turbines through house prices. Journal of Environmental Economics and Management, 72, 2015 212 Sunak, Y., Madlener, R., The impact of wind farm visibility on property values: A spatial difference-in-differ- ences analysis. Energy Economics, 55. 2016 213 (Westlund, Wilhelmsson, The Socio-Economic Cost of Wind Turbines: A Swedish Case Study, 2021 214 Skenteris, K., Mirasgedis, S., Tourkolias, C., Implementing hedonic pricing models for valuing the visual impact of wind farms in Greece. Economic Analysis and Policy, 64, 2019 215 Urbis Pty Ltd, Review of impact of wind farms on property values, 2016 216 Westlund, Wilhelmsson, The Socio-Economic Cost of Wind Turbines: A Swedish Case Study, 2021
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
248
Figure 4.14.8), it should be concluded that other socio-economic factors in the country have a much more significant impact on property market values.
A long-term study was published in 2024217, which estimated real estate changes in the US before the announcement of the intention to build WTG farms, after the announcement and up to 10 years after the construction of the wind farms. The results of the study show that for dwellings located within a 1-mile (1.6 km) radius of the WTG farms, price decreases were ob- served after the announcement of the construction plan, but within 10 years of the construc- tion of the wind farm the price level increased and reached the regional average price. The impact on housing prices is much smaller for properties within a 1–2 mile radius of the WTG farms, and insignificant for properties further than 2 miles from the wind farms.
The House Price Index is a quarterly indicator that reflects changes in the prices of housing purchased by people on the free market. The House Price Index covers all house purchases, regardless of the purpose and future use of the property. The House Price Index covers trans- actions between households on the one hand and traders, state or local government institu- tions on the other hand, as well as between two or more households. According to data col- lected by the Central Statistical Bureau, the value of housing prices in Latvia can fluctuate by 33% even within one quarter, but the direction and range of fluctuations largely depend on the economic growth rate in the country and other factors.
Figure 4.14.8. Changes in the value of the House Price Index (reference period — 2013)218
Accordingly, it is likely that the implementation of the intended activity may reduce the market value of properties in the vicinity of the wind farm. Although it is not possible to assess quan- titative indicators for describing the significance of the impact in Latvia on the basis of the
217 Eric J. Brunner, Ben Hoen, Joe Rand, David Schwegman. 2024. Commercial wind turbines and residential home values: New evidence from the universe of land-based wind projects in the United States, Energy Policy, 185, 2024, 113837, ISSN 0301-4215. Available at: https://doi.org/10.1016/j.enpol.2023.113837 218 https://stat.gov.lv/lv/statistikas-temas/valsts-ekonomika/paterina-cenas/tabulas/pci050c-majokla-cenu- indekss-un-parmainas
0
50
100
150
200
250
300
20 13
20 14
20 15
20 16
20 17
20 18
20 19
20 20
20 21
20 22
20 23
I
20 23
II I
C ha
ng e
va lu
e, %
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
249
available information, even if the magnitude of the changes under the worst-case scenario identified in studies of other countries is assessed, it is to be concluded that the potential impact of construction of the planned wind farm on the market value of properties in the vicinity of the intended activity will be comparable to the magnitude of changes in the market value of properties in the residential segment of the market caused by other processes in the country.
Hence, overall, the impact on property values in the immediate area of influence is assessed as moderate unfavourable, and at the local level as minor unfavourable. The impact on the maintenance of the real estate function is assessed as moderate unfavourable and, at the local level, as minor unfavourable, given that the designated use within 800 m of the pro- posed WTGs is agricultural land or forest territory.
Compensation to the Local Community
It should be noted that according to the amendments to the act on electricity markets, for the operation of a wind turbine generator, if its installed capacity is equal to or greater than one megawatt, the installer or owner of the WTG will be required to make an annual payment to the local community for the discomfort caused by the wind turbine generator for the total installed capacity of each unit, starting from the moment the respective unit is put into oper- ation. For the local community, 100 per cent of the compensation for the inconvenience caused by the wind turbine generators will be paid into the local government budget in whose territory the electricity generation facility is located or will be installed. The procedure for the use of these funds by the local government and the purposes for which they are to be used must be determined by the local government by means of binding regulations. The amount of compensation will be determined in the cabinet regulations, which will be developed and adopted on the basis of the new amendments to the act on electricity markets. As stated in the annotation to the amendments219, the local government can use the funds from the pay- ment for the operation of the wind energy equipment, for example, for:
- reducing energy poverty in the respective municipality;
- supporting municipal infrastructure projects (e.g. roads, outdoor lighting, greening and nature protection projects);
- educational purposes; informing the public about renewable energy, climate change, energy efficiency and environmental protection matters;
- competitively and prioritised electricity generation equipment installed in the im- mediate vicinity for the following purposes: investment support for renewable en- ergy generation equipment for private individuals and businesses, energy effi- ciency projects, support for energy communities, support for active users and self- producers of renewable energy in the affected area.
Local governments and regional populations will directly benefit financially from the compen- sation, contributing to a better quality of life and increased ability to pay. This in turn can boost local consumption, improve the local business environment and have a positive impact on the market values of properties.
219 Annotation to the draft of amendments to the act on electricity markets: https://tita- nia.saeima.lv/LIVS13/SaeimaLIVS13.nsf/0/02418148FD9D269FC225881C0049D340?OpenDocumet
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
250
Cross-border impacts
The Lode wind farm also includes associated infrastructure (a cable line) in the territory of Estonia, but its environmental impact will be assessed separately. Overall, the intended activ- ity (i.e. wind turbine generators in the Latvian territory) is expected to have similar impacts on socio-economic aspects and affected parties on a local and place-specific level in Estonia as described in this section for the Latvian territory, i.e. no significant negative impacts on socio-economic aspects are expected.
4.15 Other Impacts
4.15.1 Vibrations
Similarly as in any other mechanical equipment, vibrations during the operation of a WTG are caused by the imbalance and friction of rotating parts. The main sources of vibration in a WTG are the generator, gearbox and bearing systems. The vibration of these rotating parts can also cause the nacelle and tower to vibrate. At high wind speeds, the level of vibration can be increased by imbalances in the WTG parts due to wind pressure and turbulent flows. Mitigat- ing and controlling vibrations caused by the mechanical parts of a WTG has been one of the most important research areas for WTG engineers in recent decades. The search for new so- lutions continues today, with WTG operators being the main initiators of such studies, as vi- bration-induced equipment damage can significantly increase the operating costs of WTGs. The vibrations generated by the WTG structures have a direct impact on the vibration levels that will be experienced in the vicinity of the WTG.
In order to reconcile the wishes of the users of the WTGs with modern technological possibil- ities, the first guidelines in the world (VDI 3834 “Messung und Beurteilung der mechanischen Schwingungen von Windenergieanlagen und deren Komponenten - Onshore-Windenergiean- lagen mit Getrieben”, March 2009) were approved in Germany in 2009, setting vibration limits for the mechanical parts of WTGs. In 2015, these guidelines were updated to extend the thresholds also with regard to WTGs with a rated capacity of more than 3 MW. These guide- lines and the limit values set are taken into account by all major WTG manufacturers when developing new WTG designs and by WTG operators. The permissible limits for vibration ve- locity and acceleration as defined in VDI 3834 are shown in Figure 4.15.1.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
251
Figure 4.15.1. Permissible vibration levels of mechanical parts of a WTG according to VDI 3834
Vibrations from WTGs have not been studied in Latvia, and relatively few studies have been carried out in other countries. Most of the studies carried out so far have analysed solutions to mitigate vibrations caused by the mechanical parts of WTGs to prevent damage to WTGs due to vibrations, and only a few studies have analysed the effects of vibrations in the vicinity of WTGs.
In 2013–2015, a study by the Baden-Württemberg Ministry for the Environment, Measure- ment and Nature Protection also measured vibrations alongside low-frequency sounds from WTGs. The measurements were taken at the Nordex N117 WTG on a 140.6 m high mast, op- erating at rated power. According to the measurement results, the vibration acceleration at the station (on the station’s base plate) exceeded 1 m/s2, but the vibration level decreased rapidly while moving away from the station. At a measurement point at 285 m from the sta- tion, the vibration acceleration was slightly higher than 0.01 m/s2, which was insignificantly higher than the level observed during the period when the WTG was switched off. Similar measurement results were obtained in a study carried out in Canada where vibration meas- urements at different distances from a WTG were carried out at a 2.3 MW WTG in an 88-unit wind farm. Again, this study shows that vibration acceleration levels can be high in the imme- diate vicinity of the WTG, but at a distance of 300 m from the WTG they are no higher than 0.01 m/s2. Similar levels of vibration from WTGs have also been found in a study analysing the impact of WTGs on the operation of seismological equipment.
Permissible vibration velocity mm/s
Permissible vibration acceleration m/s2
Range
Range
Component
gearbox bearing system generator nacelle/tower
gearbox gearbox generator bearing system nacelle/tower
Component
Normal operating mode Alarm level
Operation suspension level
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
252
The level of vibration caused by WTGs and their impact on nearby areas in Latvia are not lim- ited by regulatory limits. Until 30 June 2010, the vibration limit values were laid down in cab- inet regulation no. 341 of 25 June 2003, on regulations on permissible values of vibration in residential and public buildings (hereinafter referred to as cabinet regulation no. 341). No new legislation setting vibration limit values has been issued since 30 June 2010, when the said cabinet regulation expired. Cabinet regulation no. 341 set lower vibration limit values for op- erating theatres and wards in medical and rehabilitation institutions (nighttime hours), where the weighted vibration acceleration could not exceed 0.028 m/s2. In residential premises, the weighted vibration acceleration could not exceeded 0.04 m/s2 at night and 0.07 m/s2 during the day.
A comparison of the results of vibration measurements at WTGs with the vibration limit values in force in Latvia until 30 June 2010 shows that vibration levels caused by WTGs in their im- mediate vicinity are higher than the limit values, while vibration levels at a distance of 300 m from WTGs are significantly lower than the lower limit value applicable to operating theatres and wards of medical and rehabilitation institutions (night period). Although there are cur- rently no studies on the vibration levels of the WTG models assessed in this EIA, given that the limit values for the mechanical parts of WTGs are set independently of the power of WTGs, there is no reason to believe that the vibration levels from the planned wind farm in Valmiera will be significantly higher and pose a threat to public health. In other words, the impact on public health caused by vibrations from WTGs is assessed as minor.
4.15.2 Exposure to Electromagnetic Fields
Electromagnetic fields are generally not sensed by the sensory organs, and low-level electro- magnetic fields do not immediately result in unfavourable effects on human health. At the current level of scientific development, it is not clearly known whether such effects on human health exist at low levels of electromagnetic fields, but if they do, the high latency period may make it difficult to attribute any effects unambiguously to exposure to low-level electromag- netic fields that occurred at some earlier time, excluding other possible causes of the effects.
The widespread use of electricity in many areas of modern life (industry, transport, house- holds, etc.) and the associated generation and transmission of the necessary electricity, fixed and various wireless communication, radio, TV and radar applications, as well as medical di- agnostics and therapies using various types of electric, magnetic and electromagnetic fields, have added to the electric, magnetic and electromagnetic fields always present in the envi- ronment around us (the Earth’s magnetic field — (in Latvia approximately 51 μT), natural elec- tric fields, which, although quasi-static, can vary by several orders of magnitude (from 200– 500 V/m on a normal day when the sun is sometimes obscured by clouds, to 20 kV/m or more during thunderstorms), cosmic magnetic storms, cosmic radio waves, infrared and ultraviolet radiation and visible light, cosmic and terrestrial ionising radiation). Living things, including humans, also generate electric and magnetic fields, but their intensity is usually low.
People realised that electromagnetic radiation of very high energy could be dangerous soon after the practical use of electricity began, first with the use of X-ray machines and radioiso- topes. Therefore, safety requirements first emerged specifically for the part of the electro- magnetic spectrum that carries more energy — ionising radiation.
Since 1 November 2018, cabinet regulation no. 637 of 16 October 2018, on regulations on the assessment and limitation of exposure of the population to electromagnetic fields, has been
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
253
in force in Latvia. It transposes the restrictions set out in European Council Recommendation 1999/519/EC of 12 July 1999220 (hereinafter referred to as 1999/519), which in turn is based on the ICNIRP guidelines of 1998221 (hereinafter referred to as ICNIRP98). It should be noted that, for several years, both the Ministry of Health and the authorities under its authority and supervision have, prior to the entry into force of cabinet regulation no. 637 of 16 Octo- ber 2018, used the European Council Recommendation 1999/519/EC of 12 July 1999 to assess the impact of various sources of electromagnetic fields on the population, for example in con- nection with the construction and commissioning of mobile communication base stations.
Within the framework of this EIA process, an assessment of the electromagnetic radiation associated with the intended activity has been carried out, including a comparison of the cal- culated radiation levels with the limit values and target values for the protection of public health specified in cabinet regulation no. 637 of 16 October 2018, on regulations on the as- sessment and limitation of exposure of the population to electromagnetic fields. According to the said regulation, the numerical value of the electromagnetic field target value for the pop- ulation for a magnetic field arising from the voltage at the frequency of 50 Hz is 100 µT.
Calculations using the FEM method (referenced in LVS EN 50499 “Procedure for the assess- ment of the exposure of workers to electromagnetic fields”) show that the actual magnitudes of the external fields would have to be significantly higher for the induced body currents to reach the limit values. Hence, the real external field actually needed to achieve a root mean square of current density of 2 mAm/m2 in a human, which corresponds to the threshold value, is 360 μT. Accordingly, for 50 Hz, the limit value of 2 mA/m2 would not be exceeded even if the target values for the magnetic field were exceeded more than 3 times.
The flux density (induction) of a magnetic field is mainly determined by the strength of the current flowing through the wires and the distance to them. The flux density of a magnetic field for a single (infinitely long, straight) conductor can be calculated using the Biot-Savart- Laplace law, based on a simplified formula:
= 02 ∗
By decomposing the Bio-Savar-Laplace formula into a Taylor series, the first term in the series can be considered as equal to zero, and the magnetic field generated by underground cables at 1 m above the ground level will depend mainly on the depth of the cable, the amperage, the spacing of the phase wires and their relative positions. If the wires are arranged in an equilateral triangle, it is:
= 320.5 ∗ 02 ∗ ∗ 2,
where 0 is the magnetic constant (4 ∙ 10 − 7/), is the pi number, is the current flowing through the wire, is the distance between the conductors of the individ- ual phases, and is the distance from the wire.
The WTG models assessed within the EIA process are very similar in terms of technology, i.e. they have a generator, a transformer and mechanisms for monitoring and controlling the
220 European Council Recommendation 1999/519/EC of 12 July 1999 on the limits of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz) 221 International Commission on Non-Ionizing Radiation Protection (1998). Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74, 494-522.ICNIRP
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
254
operation of the unit built into a nacelle located at least 150 metres above the ground, and depending on the WTG model, they can be equipped with a 20 kV, 30 kV, 34.5 kV or 40 kV transformer.
The following main sources of electromagnetic fields are likely to arise from the construction of the wind farm and the associated underground cabling to the 110 kV substation:
1) Power generator and transformer. Given that the power generator and the voltage step-up transformer, irrespective of the WTG model, will be located in the WTG nacelle at a height of more than 150 m and surrounded by an electrically conductive enclo- sure, the electric field will be well shielded and is considered insignificant from the point of view of potential impact. In the vicinity of the WTG, the magnetic field at the ground level will be low because the power generator and the step-up transformer are located far from the ground surface (in a nacelle, at least 150 m high) and the magnetic field induced in the windings of the power generator and transformer decreases in proportion to the cube of the distance.
2) Power cable from the nacelle to the base of the WTG tower. Based on the WTG spec- ifications indicated in Table 3.2.1, the maximum possible current in the cable will be around 360 A. Given that the WTG tower will use shielded three-core cables, the mag- netic field due to the maximum current at a distance of 20 cm from the cable will not exceed 3 to 9 μT, depending on the distance between the cores of the cable. Given that no persons will be permanently present in the immediate vicinity of the WTGs, i.e. there are no dwellings or other facilities in the area where residents, employees or visitors would be required to stay permanently, such magnetic field values are consid- ered to be of minor significance. At a distance of 5 m from the cable, the magnetic field flux level could be between 0.12 and 0.37 μT, depending on the internal geometry of the cable used, in case the voltage is only 20 kV, and if a higher voltage is used, the magnetic field flux density will decrease.
3) Underground cable network from the WTG to the substation. Shielded three-core ca- bles are planned to be used. Thus, with a current of 360 A and a cable burial depth greater than 1 metre, the lowest possible magnetic field will be ensured as the differ- ent phases of the same system will be in the optimal so-called triangular configuration for reducing the magnetic field. The size of the field will depend on the current flowing and the depth of cable embedment, while the magnitude of the current is directly related to the voltage used. As there is virtually no electric field on the outside of shielded three-core cables, the use of voltages higher than 20 kV is a simple but effec- tive way to reduce the magnetic field above the cable routes. At 20 kV at 1 metre above ground with a cable burial depth of 1 metre, a flux density of up to 5 μT is ex- pected in the magnetic field.
The following tables will show the calculated values of the magnetic field directly above the cables at a height of 1 m above the ground level, depending on the distance between the individual phase conductors, the depth of burial of the cables, and at distances of 10 m, 20 m and 30 m from the cable line.
The calculations in Table 4.15.1 are for a single 20 kV cable from the WTG to the substation carrying 360 A current, corresponding to 7.2 MW of Vestas EnVentus, with a 20 kV step-up transformer. According to the calculations, the flux density of the magnetic field at 1 metre
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
255
above the ground level is 20 times lower than the set target value. If the WTG is equipped with a higher voltage transformer, or if WTG models with lower rated power are used, the flux density in the magnetic field will be lower.
Table 4.15.1. The magnetic field flux density at 1 m the above ground level for under- ground cables from the WTG to the wind farm substation (depending on cable depth and at a distance of 10 m, 20 m and 30 m from the cable, WTG rated power 7.2 MW, current 360 A (if the WTG is equipped with a 20 kV transformer))
Cable depth, m Magnetic field flux density, μT, if the distance between the phases is:
0.05 m 0.08 m 0.10 m 0.12 m 0.15 m 0.20 m
0.7 1.526 2.441 3.051 3.662 4.577 6.103
0.8 1.361 2.177 2.722 3.266 4.082 5.443
1 1.102 1.764 2.205 2.645 3.307 4.409
1.2 0.911 1.458 1.822 2.186 2.733 3.644
1.5 0.705 1.129 1.411 1.693 2.116 2.822
2 0.490 0.784 0.980 1.176 1.470 1.960
2.5 0.360 0.576 0.720 0.864 1.080 1.440
3 0.276 0.441 0.551 0.661 0.827 1.102
at a distance of
10 m 0.044 0.071 0.088 0.106 0.132 0.176
at a distance of
20 m 0.011 0.018 0.022 0.026 0.033 0.044
at a distance of
30 m 0.005 0.008 0.010 0.012 0.015 0.020
Table 4.15.2 shows the calculations for a single 20 kV cable from the wind farm to a 110 kV substation carrying a current of 5,100 A, which is the worst case and technically not feasible, but even in this case the flux density at 1 metre above the ground is 1.6 times lower than the set target value. If 3 separate 20 kV cables are used, the flux density of each individual cable will be 3 times lower.
Table 4.15.2. The magnetic field flux density at 1 m the above ground level for underground cables from the wind farm to a 330 kV substation (depending on cable depth and at a dis- tance of 10 m, 20 m and 30 m from the cable. Voltage 20 KV, current 5,100 A, situation where the wind farm operates with a maximum rated power of 102 MW and the WTG is equipped with a 20 kV transformer)
Cable depth, m Magnetic field flux density, μT, if the distance between the phases is:
0.05 m 0.08 m 0.10 m 0.12 m 0.15 m 0.20 m
0.7 21.613 34.581 43.226 51.872 64.839 86.453
0.8 19.278 30.845 38.557 46.268 57.835 77.114
1 15.615 24.985 31.231 37.477 46.846 62.462
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
256
Cable depth, m Magnetic field flux density, μT, if the distance between the phases is:
0.05 m 0.08 m 0.10 m 0.12 m 0.15 m 0.20 m
1.2 12.905 20.649 25.811 30.973 38.716 51.621
1.5 9.994 15.990 19.988 23.985 29.982 39.976
2 6.940 11.104 13.880 16.657 20.821 27.761
2.5 5.099 8.158 10.198 12.237 15.297 20.396
3 3.904 6.246 7.808 9.369 11.712 15.615
at a distance of
10 m 0.516 0.826 1.032 1.239 1.549 2.065
at a distance of
20 m 0.142 0.227 0.283 0.340 0.425 0.567
at a distance of
30 m 0.065 0.104 0.130 0.156 0.195 0.260
The calculation in Table 4.15.3 corresponds to the worst-case scenario where the current from the wind farm flows to the substation through a single 40 kV cable. In this case, the current in the underground cable could reach 2,550 A, which is a technical challenge, but even in this case the flux density of the magnetic field at 1 metre above the ground is 3.2 times lower than the set target value.
4.15.3. The magnetic field flux density at 1 m the above ground level for underground ca- bles from the WTG farm to a 110 kV substation (depending on cable depth and at a dis- tance of 10 m, 20 m and 30 m from the cable. Current 2,550 A (corresponds to the situation where the WTG is equipped with 40 kV transformers, the current flows from the WTG farm to a 330 kV substation, the wind farm has a rated generation capacity of 102 MW)
Cable depth, m Magnetic field flux density, μT, if the distance between the phases is:
0.05 m 0.08 m 0.10 m 0.12 m 0.15 m 0.20 m
0.7 10.807 17.291 21.613 25.936 32.420 43.226
0.8 9.639 15.423 19.278 23.134 28.918 38.557
1 7.808 12.492 15.615 18.739 23.423 31.231
1.2 6.453 10.324 12.905 15.486 19.358 25.811
1.5 4.997 7.995 9.994 11.993 14.991 19.988
2 3.470 5.552 6.940 8.328 10.410 13.880
2.5 2.549 4.079 5.099 6.119 7.648 10.198
3 1.952 3.123 3.904 4.685 5.856 7.808
at a distance of 10 m 0.258 0.413 0.516 0.619 0.774 1.032
at a distance of 20 m 0.071 0.113 0.142 0.170 0.212 0.283
at a distance of 30 m 0.032 0.052 0.065 0.078 0.097 0.130
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
257
The magnetic field flux density values have been calculated assuming that the separate phases in the underground cable are arranged in a triangular configuration. If the separate phases were aligned in a plane on the same level, the magnetic field flux at 1 m above the ground would be about 1.4 times higher if the plane was parallel to the ground.
In addition, it should be noted that in real life, WTGs will not be operating at maximum power all the time, so the magnetic field flux density levels will not always reach those obtained from the worst-case calculations. However, it should be stressed that in any case the target values set out in cabinet regulation no. 637 of 16 October 2018, on regulations on the assessment and limitation of exposure of the population to electromagnetic fields, will not be exceeded, as shown by the calculations of different situations presented above, and if the depth of the cables was at least 1 m, they would not reach even half of the target values. It is important to note that these regulations state that a person can be exposed to such a magnetic field for 24 hours a day without harmful health effects. No residential development and no continuous presence of persons is foreseen in the area of the wind farm, in the immediate vicinity of WTGs and above the planned cable network of WTGs. Persons carrying out servicing and maintenance works in the vicinity of WTGs are subject to occupational exposure limits that are higher than those for the general public.
The electromagnetic fields that will be generated if the wind farm project is implemented to its maximum extent are not considered likely to have significant effects on public health in general and on the health of people living in the vicinity of the wind farm and using the roads along the underground cable routes. Such electromagnetic fields also do not interfere with the operation of various equipment, including specific medical equipment/devices that sup- port human functions and which are manufactured with a high degree of protection against magnetic fields.
5 PARTICIPATION OF THE PUBLIC
In accordance with the act on the management of the spread of the COVID-19 virus (effective from 10 June 2020 to 31 December 2023), an initial public consultation on the EIA process was held (remotely) from 18 September to 11 October 2023.
The announcement on the initial public consultation was published in the newspaper Liesma on 15 September 2023, in the September issue of the Valmiera municipality newsletter no. 9 (27), published on 18 September 2023, as well as on the websites of the Valmiera municipality local government, the Environment State Bureau and the report’s author: Estonian, Latvian & Lithuanian Environment, SIA. The property owners (possessors) whose properties are located in or adjacent to the research area of the wind farm have been individually informed about the initial public consultation of the intended activity.
The initial public consultation meeting on the intended activity was held remotely via an online videoconference on 2 October 2023 at 18:00. A total of 33 participants attended the initial public consultation meeting.
The attendees became acquainted with the information on the main objectives of EIA, which include identifying impacts, assessing them, identifying alternative solutions and mitigating or eliminating the impacts assessed. As well as on the criteria for selecting the location, number of WTGs, size and possible layout of the planned wind farm. The participants of the meeting were provided with information on the expected impacts during construction, including the use of local roads, the possibility for the hunters’ group to use the wind farm area, and the
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
258
impacts during operation, including the amount of real estate tax, the noise level of the sub- station, the benefits of the wind farm for the local government, the surrounding community and local residents, such as the nuisance payment to the local government, etc.
During the initial public consultation, no emails were received to the email address of the activity initiator.
6 LIMITING FACTORS FOR THE INTENDED ACTIVITIES AND SOLUTIONS TO MIT- IGATE ENVIRONMENTAL IMPACTS
This section summarises the information on limiting factors, potential significant impacts and mitigation solutions, as analysed and described in detail in Section 4.
6.1 Factors Limiting the Intended Activity
The EIA report has identified limiting factors for the intended activities, which determine the feasibility of the activities at the selected sites.
The area of the planned wind farm includes land units where energy production enterprises or facilities may not be constructed. Likewise, the regulations on the use of territory and its development222 stipulate that a free-standing installation, such as a wind turbine generator, will be located on a plot of land so that the distance to the boundary of the plot of land is not less than the maximum height of the installation, so in order to implement the construction of the planned Lode wind farm, a local plan and new regulations on the use of territory and its development for the local plan area will be drawn up, changing the permitted territory use to one that allows the construction of wind turbine generators and removing or changing the conditions regarding the defined distances to the boundary of the land plot.
In accordance with paragraph 163 of cabinet regulation no. 240 of 30 April 2013, on general regulations for the planning, use and building of the territory, when planning the location of WTGs with a capacity of more than 2 MW, the distance from the nearest planned WTG and the boundary of the wind farm to residential and public buildings must be at least 800 m.
The construction of WTG L_16A and L_17A as an alternative to WTG L_16 and L_17 is allowed if the house known as Inčkalni (cadastral designation 96680010088) is agreed for demolition and cancellation of entries in the cadastre and the land register.
The limiting factors for the intended activities are related to the construction of WTG L_01. According to the current planning, the construction of WTG L_01 site will affect the site of the protected Orobanche pallidiflora (O.reticulata). According to the experts’ assessment, the construction of the above-mentioned development site is not supported. It is recommended that the development site be relocated to the south outside the Orobanche reticulata loca- tion.
The assessment of environmental aspects related to the impact of the intended activity on public health (environmental noise, flickering) has revealed that the choice of certain techno- logical alternatives may lead to changes in the state of the environment that do not comply with the environmental quality threshold values determined in Latvia or used in this environ- mental impact assessment process and borrowed from the regulations of other countries. Alt- hough technological solutions are available to mitigate these impacts, the refusal to
222 TUDR, § 25.1.3
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
259
implement mitigation measures would be considered as a limiting factor for the implementa- tion of the intended activity.
The initiator should also take into account the need for mitigation measures for ornithofauna, bats, biotopes of EU importance and other natural values, as well as landscape and cultural- historical values in the case of the construction of certain WTGs. More information on the quantitative indicators of impact and mitigation solutions is provided in Section 4 of the Re- port. Information on potential significant impacts and associated mitigation measures is sum- marised in Table 6.1.2 of this Report.
It should be noted that the potential locations for WTGs are indicative, according to the cur- rently available information, and may be adjusted within the boundaries of the indicated prop- erty during the development of the construction design. In such a case, it should be ensured during the design phase that the proposed changes do not affect the identified natural values and, in cases where the chosen solution differs from the one assessed in this Report, a reas- sessment of the impacts on the aspects that depend on the change of location, such as calcu- lations of the timing of the flickering effect, identification of the affected built-up areas and the development of shutdown regimes for the WTGs. Changes to the location of WTGs and a reassessment of the impacts associated with these changes may identify additional limiting factors to the implementation of the changed design.
6.2 Potential Substantial Impacts and Mitigation Solutions
This section of the Report summarises information on the likely substantial or significant im- pacts and mitigation measures that will be required or recommended as a result of imple- menting the intended activity. Environmental impact mitigation measures are classified into two groups:
- measures to meet requirements set out in legislation and guidelines or by authorities, measures for public safety, or measures to avoid, mitigate or compensate for signifi- cant or substantial impacts. These measures should be considered as measures with- out the implementation of which the intended activity would not be permissible;
- recommendations for impact mitigation based on expert judgement, but not set out in legislation or guidelines.
Information on potential substantial impacts and associated mitigation measures is summa- rised in Table 6.1.2 of the Report, distinguishing between measures applicable to the construc- tion period and measures applicable to the operation period of WTGs. This table also provides an assessment of the significance of the residual impacts using the criteria in Table 6.1.1. In determining the significance of impacts, environmental and social considerations arising from the requirements of legislation, policy and development planning documents, guidelines and environmental protection principles, as well as the public interest in the context of the envi- ronmental aspects assessed, were taken into account.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
260
Table 6.1.1. Assessment scale of the significance of the impact
Impact Description
Insignificant impact
No qualitatively or quantitatively measurable changes in the state of the en- vironment are expected, or the potential event has a low level of risk. Such impacts are identified in the text of the Report but are not assessed in this section.
Minor unfavourable im- pact
Qualitatively or quantitatively measurable small and/or temporary changes are expected in the level of resource consumption, in the state of the envi- ronment or in the context of certain socioeconomic factors, which do not overall prevent the achievement of the target values or threshold values for environmental quality set out in legislation.
Minor favourable im- pact
Qualitatively or quantitatively measurable small and/or temporary changes are expected in the level of resource consumption, in the state of the envi- ronment or in the context of certain socio-economic factors, which have an overall favourable effect on the environment and/or society.
Significant unfavourable impact
Qualitatively or quantitatively measurable changes of significant magnitude or scale are expected in the level of resource consumption, in the state of the environment or in the context of certain socio-economic factors, which may result in the non-achievement of the target values or guidelines for en- vironmental quality set out in legislation or guidelines.
Significant favourable impact
The intended activity will result in significant quantitatively or qualitatively measurable improvements in the level of resource consumption, in the qual- ity of the environment or in the context of certain socio-economic factors compared to the baseline situation.
Substantial unfavoura- ble impact
Environmental quality limit values set out in legislation in the field of the environment will be violated. Such an impact should be considered as an exclusionary factor.
Substantial favourable impact
The intended activity will result in substantial quantitatively or qualitatively measurable improvements in the level of resource consumption, in the qual- ity of the environment or in the context of certain socio-economic factors. The environmental quality target values set out in legislation and guidelines will be met.
The initiator of the intended activity has familiarised itself with the mandatory measures to mitigate environmental impacts identified by experts and institutions, as well as the measures whose implementation results from the provisions of legislation or institutions, and intends to fully implement the mandatory measures and assess the feasibility of the recommended measures in the implementation of the intended activity. In the context of noise impact miti- gation, the initiator of the intended activity has not yet chosen which of the possible mitiga- tion measures to implement, but is committed to implementing measures to ensure that the limit values set out in legislation or recommendations (low-frequency noise) are met. The con- struction or operation of the planned wind farm is not expected to result in significant or sub- stantial impacts through the implementation of environmental impact mitigation measures.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
261
Table 6.1.2. Measures to mitigate or eliminate environmental impacts and assessment of residual impacts
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
Noise 4.1.5. Noise impact caused by the operation of WTGs on resi- dential areas
Recommendation for the choice of tech- nological alternatives. At the planned wind farm, it is recommended to con- struct WTGs whose level of impact on nearby residential areas does not ex- ceed the noise levels recommended by the World Health Organization guide- lines.
M Construction stage All Minor unfa- vourable im- pact
Noise pollu- tion caused by the substation
To ensure that the emission limit values set out in Section 4.1 of the Report are met when selecting a substation solu- tion
M Construction stage - Minor unfa- vourable im- pact
Flickering 4.2.4. Disturbances caused by the flickering ef- fect from WTGs in resi- dential areas
Discontinuation of flickering-causing WTGs during periods when the respec- tive WTG may cause flickering in resi- dential areas, ensuring compliance with the impact target values set out in the Report
M Construction stage — re-calcula- tion of the flickering effect time has to be carried out if the chosen solution dif- fers from those as- sessed.
All Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
262
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
Operation stage — ongoing
Impact on plants and biotopes
4.3.5. Impact on plants and bio- topes — Oro- banche pallidi- flora site
– Construction must be planned with- out disturbing the identified site, at least 100 m south of the originally in- tended location
– The embankment of the WTG con- struction site must be constructed with- out any attenuation ditches;
– The locally excavated soil must be used to reinforce the edges of the con- struction site.
M Construction stage L_01 Substantial un- favourable im- pact
No movement of machinery or other ac- tivities will be permitted to the south of the amelioration ditch located along the planned access road in block 708, lot 4
M Construction stage L_03 Minor unfa- vourable im- pact
Impact on the protected
Construction without the construction site drainage
R Construction stage L_03 Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
263
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
forest biotope 9010*
No road widening is allowed affecting the landfill site of biotope 9010*
M Construction stage L_08 Minor unfa- vourable im- pact
Impacts on po- tentially pro- tected trees
Prevention of potential negative im- pacts aimed at damaging the tree can- opy or root system
M Construction stage L_04 Minor unfa- vourable im- pact
For the access solution and the widen- ing of the existing road at the junction with the new access road, a solution that preserves the roadside oaks should be chosen
R Construction pro- cess
L_16 Minor unfa- vourable im- pact
Impact on the protected for- est biotope 91D0*
The location of the WTGs, the construc- tion site and the access roads will be provided with embankments, without the construction of new ditches and without the drainage of the site. To cre- ate dams at the ends of ditches at bio- tope 91D0*
R Construction pro- cess
L_19 Minor favoura- ble impact
Impact on pro- tected plant sites
No movement of machinery, stacking of materials and other construction-re- lated activities are allowed, including in
M Construction pro- cess
All Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
264
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
the protected species sites identified in the cartographic material of the Report
Impact on plants and bio- topes
Large-sized (>25 cm) fallen trees and harvested ecological trees in clearings in the area of WTG construction sites, new access roads and power transmission cable routes should be moved to the nearest forest stand. Fallen trees and trunks of felled ecological trees must be moved, as far as possible without disar- ticulation
R Construction stage All WTGs, access
roads, ca- ble route
Minor unfa- vourable im- pact
Moving large stones (>4m3) with lichens and mosses growing on them, keeping the orientation of the stone towards the sky
R Construction stage All WTGs, access
roads, ca- ble route
Insignificant impact
Impact on the biotope 9080*
– in the area of biotope 9080*, felled trees must be placed in a stand outside the cut-through;
– machinery is only allowed to be moved by the planned cut-through.
M Construction stage Cable route in
Ipiķi Parish
Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
265
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
Restricting the spread of inva- sive species
No soil movement is allowed from these sections to avoid the spread of invasive species.
M Construction stage Cable route in Ipiķi Par-
ish, also in construc- tion areas
in Lode parish if invasive
plants are found
Favourable im- pact
Impact on bat popu- lations
4.4.4. Risk of bat mortality
Stopping or not starting up wind tur- bines from 1 June to 30 September after sunset until sunrise if:
1) the wind speed at the height of the nacelle is 5 m/s or less;
2) the air temperature is above +6°C;
3) the amount of precipitation does not exceed 1 mm/h.
M Operation stage — operating re- strictions to be re- vised in line with monitoring results
All
Minor unfa- vourable im- pact
Impact on orni- thofauna
4.5.4. Noise disturb- ance to ‘forest’ bird species
Deforestation for the construction of the WTG farm should be carried out outside
M Construction stage All Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
266
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
the bird nesting season (1 August to 1 March)
WTGs to be equipped with aerodynami- cally enhanced wings (serrated trailing edges)
R Construction stage All Minor unfa- vourable im- pact
Threats to di- urnal birds of prey in their foraging areas
To introduce solutions that make WTG wings more visible to birds, provided they do not have a significant impact on the quality of landscape
R Operation stage All Minor unfa- vourable im- pact
Threat of loss of Black Stork foraging habi- tat
To refuse from the construction of WTGs within 500 m buffer zone from the river, WTG L_17A to be implemented in pref- erence
R Construction stage L_17 Minor unfa- vourable im- pact
Decrease in habitat quality (noise pollu- tion) for the European Kes- trel, white- backed wood- pecker, lesser
During the period 1 March to 1 July, in the mornings one and a half hours be- fore and up to five hours after sunrise and in the evenings two hours before and up to one and a half hours after sun- set to keep the station switched off pro- vided that the wind speed is less than 5 m/s.
R Operation stage L_02 Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
267
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
spotted wood- pecker, grouse
Decrease in the quality of the priority protection area of White- backed Wood- pecker (noise pollution)
Restriction of WTG operations and hu- man activity (during construction and maintenance) during the nesting season from March through June
R Construction stage, Operation stage
L_01, L_03 Minor unfa- vourable im- pact
Threats to lesser spotted eagle and kes- trel popula- tions (risk of collision)
To install and use equipment for auto- matic flight detection, identification of flying birds and automatic stopping of the WTG for birds (at least lesser spotted eagle, hen hawk, gull, sea eagle, golden eagle, osprey, black stork, white stork, mouse kite) covering the whole territory of the wind farm or at least 1.5 km ra- dius around each WTG
M Operation stage All Minor unfa- vourable im- pact
Threats to owl species (habi- tat loss, noise pollution)
Placement and maintenance of at least 10 nest boxes in and around the planned wind farm area, with artificial nesting
M Construction stage (until the com- mencement of con- struction works)
- Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
268
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
sites in suitable biotopes and around ob- servation sites (with signs of nesting)
Placement and maintenance of at least seven boxes for the barn owl in and around the planned wind farm area, with artificial nesting sites in suitable bi- otopes and around observation sites
M Construction stage (until the com- mencement of con- struction works)
- Minor unfa- vourable im- pact
Restriction on the operation of WTGs at wind speeds below 5 m/s
M Operation stage L_11, L_18 Minor unfa- vourable im- pact
Risk of loss of quality (frag- mentation) of bird habitats
For electricity supply and communica- tion, to lay buried cable lines along roads
R Construction stage All Minor unfa- vourable im- pact
Reduction in bird habitat area
To maintain forests of equivalent condi- tions in the WTG area without any form of logging
R Construction stage, Operation stage
L_02, L_03 Minor favoura- ble impact
Impacts on the lesser spotted eagle micro-
The cable line must be located at least at the crown projection distance of the outermost growing trees from the boundary of the micro-reserve area
M Construction stage Cable route
Insignificant impact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
269
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
reserve ML 3099
Construction works in and along the buffer zone must be carried out be- tween 1 September and 29 February
R Construction stage
Risk of colli- sions
To not enclose WTGs and infrastructure elements. If a fence is needed, it should be as low as possible and visible to birds
R Construction and operation stages
All WTGs and sub- station
Minor unfa- vourable im- pact
The first section of the WTG mast at 20 m height must be painted dark (sur- rounding shades: green/brown; with a gradual transition from dark to light)
M Operation stage All Minor unfa- vourable im- pact
To introduce solutions that make WTG wings more visible to birds, provided they do not have a significant impact on the quality of landscape
R Operation stage All Minor unfa- vourable im- pact
WTGs must be equipped with auto- mated bird detection and identification systems (e.g. cameras) capable of iden- tifying large bird species and, if neces- sary, momentarily reducing the rotor speed or stopping it completely.
The following species should be recog- nised: lesser spotted eagle, hen hawk,
M Operation stage All Unfavourable impact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
270
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
gull, sea eagle, golden eagle, osprey, black stork, white stork, common buz- zard.
Landscape and visual impact
4.6.7. Changes to the landscape and visual impact on the overall landscape
Light (white) colour of WTG wings M/R Construction stage All Minor unfa- vourable im- pact
To use single-colour illumination for sig- nal lighting
M Construction stage All Minor unfa- vourable im- pact
To ensure the protection of valuable trees by consulting a certified arborist during construction on the measures to be taken during the construction pro- cess, as well as preparing the alignment of supply routes
M Construction stage All Insignificant impact
To choose delivery routes that eliminate the need for extensive roadside clear- ance. Temporary diversion routes should be created where possible to minimise the potential felling or cutting of trees, groups of trees, rows or ave- nues.
M Construction stage All Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
271
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
In forest lands and roadsides, artificial reforestation is recommended to re- duce the direct impact of the WTG struc- tures on close-up views
R Construction stage All Minor unfa- vourable im- pact
Cultural and histor- ical herit- age
4.7.3. Destruction of archaeological sites and arte- facts
Before the start of construction works, the wind farm area must be surveyed by a professional archaeologist to check for archaeological sites in the areas of WTGs and utilities
M Construction stage (construction de- sign stage)
All Insignificant impact
Uncovering the remains of soldiers killed in action
Earthworks must be stopped at the re- spective site and the police and the As- sociation “Committee of the Brethren Cemetery” ([email protected]) must be notified immediately if human remains are found. The contractor must ensure that the exhumation of the re- mains of the soldiers is carried out un- der the supervision of an expert.
M Construction stage (construction work stage)
All Insignificant impact
Air quality 4.8.5. Disturbance caused by dust pollution
Record all complaints received about foaming and/or air quality, identify their causes and implement corrective ac- tions
R Construction stage All (includ- ing trans- portation
routes)
Insignificant impact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
272
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
Record all emergencies resulting in in- creased foaming and/or air pollution and the actions taken to address the im- pact
R Construction stage
Carry out regular inspections of con- struction sites and assess the implemen- tation of anti-foaming measures
R Construction stage
Identify and provide sufficient water for the construction site and haul road wet- ting
R Construction stage
Ensure that road surfaces are wetted or treated with anti-dust material in the event of complaints from residents about dust nuisance To be implemented for foaming in favourable weather con- ditions, on gravel roads
R Construction stage
Prioritise the use of asphalted roads for transport, gravel roads only where justi- fied, including where there are no alter- native transport routes.
R Construction stage
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
273
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
Engine emis- sions from construction machinery
To not allow engines to idle — switch off engines when not in operation
R Construction stage Insignificant impact
Environ- mental risks and accidents
4.12.5 Environmental risks and emer- gency situa- tions
Developing and implementing a civil protection plan
M Construction stage
Operation stage
All Insignificant impact
WTG Mechani- cal damage or breakdown
Automatic process control and monitor- ing
M Operation stage All Insignificant impact
Lubrication system faults with oil leaks
Leak detection systems M Operation stage All Insignificant impact
Environmental impact of a wind farm fire
Automatic fire detection and extinguish- ing systems
M Operation stage All Insignificant impact
Icing on WTG rotor blades
WTGs must be equipped with ice detec- tion systems to ensure that they are stopped when icing is detected
M Operation stage L_03, L_05, L_07,
L_08, L_09
Minor unfa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
274
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
In addition to the above (including on roads managed by the utility), it is rec- ommended to implement one or a com- bination of the following solutions:
To install warning signs about the risk of falling ice chunks;
To install warning lights connected to the ice detection system and combined with warning signs;
To close access roads with physical bar- riers in the event of icy conditions;
To resume the operation of WTGs man- ually, with the plant operator present
R Operation stage L_03, L_05, L_07,
L_08, L_09
Minor unfa- vourable im- pact
Contami- nation of soil and ground- water
4.10.6. Fuel or lubri- cating oil spills during con- struction (tem- porary storage areas for equipment and materials
Assessing the level of soil contamination before dismantling the sites and decid- ing on the future use of the removed soil
R Construction stage All Insignificant impact
For WTGs located closer than 166 m to watercourses, the emergency response planning should include appropriate ac- tions and resources to contain and
M Construction stage, Operation stage
L_05, L_08, L_10,
L_12, L_17
Insignificant impact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
275
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
and WTG con- struction sites)
recover chemicals in the event of an ac- cident.
Impact on ameliora- tion sys- tems
4.10.6. Amelioration system func- tionality
To develop a project for the realignment of amelioration systems
M Construction stage (construction de- sign stage)
All Insignificant impact
Where existing and planned roads cross open watercourses, new culverts should be built or the need to rebuild existing culverts should be assessed
M Construction stage (construction de- sign stage)
All Insignificant impact
Communi- cation sys- tems
4.13.2. Communica- tion and broadcast sig- nal quality
If, after the construction of the wind farm, a reduction in the quality of com- munication and broadcasting signals is detected due to the operation of the WTG, measures to improve the signal quality should be implemented, the technical solutions of which should be determined on a case-by-case basis.
M Operation stage All Insignificant impact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
276
Aspect Refer- ence to the Re- port section
Brief descrip- tion of the im- pact
Mitigation measure Mandatory (M) or recom-
mended (R) measure
Time of implemen- tation
WTG num- ber to
which the measure applies
Residual im- pacts after im- plementation
Socio-eco- nomic as- pects
4.14.5. Discomfort caused by WTGs
To make a payment to the local commu- nity to compensate for the discomfort caused by WTGs for the total installed capacity of each unit (in accordance with the act on electricity markets)
M Operation stage All Significant fa- vourable im- pact
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
277
7 COMPARISON OF ALTERNATIVES TO THE INTENDED ACTIVITY
The EIA considers site alternatives and technology alternatives. More detailed information on these are given in Sections 3.1 and 3.2. Section 3.3 of the EIA Report provides the rationale for the choice of alternatives. As part of the environmental impact assessment process, a full assessment has been carried out for 19 potential WTG sites, details of which are provided in Section 4.
7.1 Assessment of Site Alternatives
Taking into account the previous experience in planning wind farms in Latvia, where it has been found that the initial definition of different alternatives for the location of WTGs, with the assessment of each alternative as the only possible solution, is not a rational solution. The EIA process may identify circumstances that require changes to the originally envisaged alter- native or alternatives, leading to derivative solutions (e.g. “Augstkalni”, “VPSP”, “SELP’ wind farms). Comparing two or more alternatives can often lead to the conclusion that the best solution in the context of nature and environmental protection is none of the alternatives in their entirety, but the selection of certain stations or solutions from more than one of the evaluated alternatives and combining them into a final solution (e.g. wind farms “Vērgale”, “SELP”).
During the environmental impact assessment of the Lode wind farm, the developer defined the initial possible locations of WTGs, which were primarily submitted to the assessment by nature experts. The nature experts’ assessment was preferred because, based on past expe- rience, it is their assessment that can have the most significant impact on the location of WTGs, while physical impacts — noise, flickering, environmental risk — are mainly mitigated not by relocating WTGs but by implementing technological measures to reduce or eliminate impacts. Up to the time of preparation of the EIA report, different baseline options for the location of individual WTGs and infrastructure have been analysed, mainly related to the avoidance of specially protected biotopes, biotopes, protected species sites and other natural values.
The assessment process started with a larger number of WTGs than those assessed and ana- lysed in detail in Section 4 of the Report, discarding at an early stage those WTGs for which implementation is not feasible based on expert conclusions of significant negative impacts that cannot be mitigated by appropriate measures or compensated for.
The option evaluated in the EIA report and the other alternatives considered for the location of the WTGs are presented in Section 3.3 of the Report.
Although this approach has avoided a number of potential conflicts in the context of nature conservation in the first place, even the basic solution chosen is not ideal (see for example the section on impacts on ornithofauna for more details). The selected baseline alternative in- cludes the construction of up to 19 WTGs in the research area. Table 3.1.3 summarises the aspects assessed in the context of the site location alternatives, while a brief assessment of the alternatives is provided in the specific sections at the end of the EIA report. Table 6.3.1 summarises information on measures to mitigate or avoid environmental impacts.
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
278
7.2 Assessment of Technological Alternatives
Four different models of WTG have been analysed as part of the environmental impact assess- ment process, in addition to different types of wing or rotor blades. It is only worth comparing the residual impacts of a technological alternative after the implementation of impact mitiga- tion measures, which are considered a prerequisite for the implementation of the intended activity.
Although the size of the WTG may also play an important role in the context of landscape protection, environmental risks, impacts on communication systems and impacts on bird and bat populations, all the technological alternatives assessed are considered to be equivalent or not significantly different in the context of these impacts.
The most important differences attributable to the choice of technological alternative relate to the physical impacts on public health, namely noise and flickering effects from the WTGs. Noise impacts are also considered significant for ornithofauna.
No single technological alternative has been identified during the environmental impact as- sessment process as a limiting factor for the implementation of the intended activity, recog- nising that not all stations available on the market have been assessed and that the initiator of the intended activity has the right to choose a newer station model not included in this assessment as long as its impacts do not exceed the environmental quality thresholds speci- fied in this assessment, and that even for a potentially worse alternative, technological solu- tions to mitigate impacts are available. The initiator of the intended activity must take into account the conclusions of the environmental impact assessment process, the conditions set for the implementation of the activity and must select a technological alternative that ensures compliance of the intended activity with the national environmental quality standards or threshold values assessed in this Report.
8 CONDITIONS FOR THE SUBSEQUENT MONITORING OF THE INTENDED ACTIV- ITY IN THE CONTEXT OF THE ENVIRONMENTAL IMPACT
As part of the environmental impact assessment process, the potential impacts of the planned wind farm have been assessed. Impacts such as flickering effects, noise pollution, safety risks, impacts on biotopes and protected plant species can be predicted with a high degree of accu- racy by assessing the scale of the intended activity and using calculation methods. Unfortu- nately, it is practically impossible to assess the exact impact of the planned wind farm on or- nithofauna and bat populations, therefore the impact of the planned wind farm on the above- mentioned animal groups should be assessed in the future by monitoring and, if necessary, introducing additional mitigation measures not specified in this Report. A detailed monitoring programme should be developed before the beginning of the construction, but after the final WTG locations and designs have been selected. The monitoring programme should be ap- proved by the Nature Conservation Agency.
Impact on bats
Bat monitoring is ensured in the first and second year after the wind turbines are operational. The methodology is developed and the monitoring is carried out by a bat expert certified by the Nature Conservation Agency according to the site specifics. The monitoring methodology includes:
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
279
• acoustic monitoring with ultrasonic detectors on the ground and automatic ul- trasonic detectors installed in the nacelles of at least four turbines to continu- ously record bat activity at least from 1 April to 31 October. Automatic detectors must be installed on one turbine in the forest, one in the open field and two in woodland habitats;
• counts of dead bats at least for those turbines where acoustic monitoring takes place (the number of turbines to be monitored may be increased where possi- ble). Searches for dead bats should be carried out by trained searchers, together with monitoring of the effectiveness of the search and the timing of the disap- pearance of the carcasses.
To facilitate the search for dead bats, a vegetation-free ground surface should be established within a radius of at least 50 m around the wind turbines foundations or grass should be cut regularly during the monitoring period. Turbines to be installed in the forest do not need cre- ation of a 50 m strip of land in addition to clearing the forest.
Ornithofauna impact monitoring
Considering that the assessment of any impact of the wind farm on bird populations is a fore- cast with some degree of uncertainty, it is important to monitor the actual impact through a comprehensive monitoring programme. A detailed monitoring programme should be devel- oped involving ornithologists, applied statistics experts and representatives of other stake- holder groups after the final selection of the turbine locations and design, but before the com- mencement of the construction work. The programme must be approved by the Nature Con- servation Agency.
Although a detailed monitoring programme should be developed and approved by the Nature Conservation Agency before the construction begins, its basics can already be outlined now.
1. Beginning of pre-construction monitoring
Considering that the wind farm construction may begin several years after the approval of the construction concept, monitoring should be initiated at least one year before the beginning of the construction in order to update information on the actual situation on and around the wind farm site. Pre-construction monitoring should provide up-to-date data on both the bird species nesting on the wind farm site or in its immediate vicinity, and bird activity during au- tumn and spring migration. Considering that the northern part of the proposed wind farm will be a special area of conservation, mainly grassland, which may be an important breeding area for corncrakes, special attention should also be paid to this species during pre-construction monitoring.
2. Monitoring during construction
The wind farm and related infrastructure construction can take several years. Monitoring should also be carried out during the construction of the wind farm, paying particular atten- tion to changes in the occurrence of species that are sensitive to disturbance from economic activities. In this process, it is very important to properly document any changes caused by the construction process itself.
3. Monitoring during operation of the wind farm
Estonian, Latvian & Lithuanian Environment, SIA
Lode Wind Farm construction environmental impact assessment report
280
After the wind farm is built, monitoring must be carried out for at least six years. The moni- toring period is indicative, and if signs of impact are identified that can only be qualitatively assessed over a longer period of time, the Nature Conservation Agency has the right to extend the monitoring period. The proponent of the proposed activity should accept that monitoring may reveal that the actual impact of the wind farm is more significant than originally antici- pated and that additional measures not foreseen in this EIA report are required to mitigate or compensate for them.
Records of dead birds by the turbines must be kept after the WTGs become operational. Since many dead birds are collected by various predators and scavengers (foxes, ravens, etc.) before they are found, it is useful to place trail cameras (automatic cameras) by four or five outermost WTGs to record any predator visits even during the night. Combining this information with the dead bird remains (feathers) records would provide reasonably good information on the spe- cies affected.
WTGs must be equipped with automatic collision detectors. When assessing the impact of WTGs (on bird mortality), the data recorded by these detectors should be compared with the number of birds found and identified dead and the conditions under which they were found.
Due to the lack of studies on the impact of sound generated by wind farms on white-backed woodpeckers, monitoring of this species should be carried out to assess the impact of WTGs due to noise and disturbance. This includes surveying bird behaviour and adapting the opera- tion of the WTGs based on the observation data.
Monitoring measures for the Eurasian pygmy owl in affected habitats should be envisaged. Monitoring of the use of nest boxes placed in and around the wind farm for Eurasian pygmy owls and barn owls should be ensured.
Noise from WTGs can also have an adverse effect of drowning out the mating song of the common snipe. It is advisable to monitor this species and to record any changes during mon- itoring.
Suur-Ameerika 1 / Tallinn 10122 / 626 2802/ [email protected] / www.kliimaministeerium.ee/
Registrikood 70001231
Vastavalt nimekirjale
18.10.2024 nr 6-3/23/4047-15
Läti "Lode" tuulepargi projekti piiriülene keskkonnamõju
hindamine
Läti on piiriülese keskkonnamõju hindamise konventsiooni (Espoo konventsiooni) alusel teavitanud Eestit
„Lode“ tuulepargi projekti keskkonnamõju hindamise (edaspidi KMH) aruande valmimisest.
„Lode“ tuulepargi projekti raames on paralleelselt algatatud keskkonnamõju strateegiline hindamine
(edaspidi KSH). Nimetatud KSH algatamisest teavitas Kliimaministeerium Teid 25.09.2024 kirjaga
nr 6-3/24/4013-2. „Lode“ tuulepargi KMH projektist on Kliimaministeerium Teid varasemalt teavitanud
08.09.2023 kirjaga nr 6-3/23/4047-2. Eesti avaldas soovi „Lode“ tuulepargi projekti KMH menetluses
osaleda 16.10.2023 kirjaga nr 6-3/23/4047-13.
Arendaja Utilitas Wind Ltd kavandab rajada Valmiera piirkonda Eesti piiri lähedusse kuni 19 tuulikuga
tuulepargi. Tuulepargi eeldatav koguvõimsus on kuni 136 MW ning ühe tuuliku planeeritav võimsus on üle
6 MW. Koormatava ala kogupindala on 12,34 km2. Kirjale on lisatud „Lode“ tuulepargi projekti KMH
aruande eestikeelne kokkuvõte ning ingliskeelne KMH aruanne1.
Arvestades Läti määratud vastamistähtaega, ootame hiljemalt 11.11.2024 seisukohti „Lode“ tuulepargi
KMH aruande kohta ning põhjendatud arvamusi selle kohta, milline oluline kahjulik piiriülene
keskkonnamõju võib planeeritava tegevusega Eestile kaasneda.
Lugupidamisega
(allkirjastatud digitaalselt)
Antti Tooming
elurikkuse ja keskkonnakaitse asekantsler
Lisad: 1. KMH aruande eestikeelne kokkuvõte
2. KMH aruanne inglise keeles
1 KMH aruande ingliskeelsed lisad on leitavad aadressilt https://ej.uz/bw24 (kontrollitud 18.10.2024).
Lilli Tamm, 6269133
Nimi | K.p. | Δ | Viit | Tüüp | Org | Osapooled |
---|---|---|---|---|---|---|
Teade | 31.12.2024 | 2 | 2.1-3/36700-5 | Sissetulev kiri | ppa | Kliimaministeerium |
Teade | 08.11.2024 | 4 | 2.1-3/36700-4 | Sissetulev kiri | ppa | Kliimaministeerium |
Taotlus | 22.10.2024 | 2 | 2.1-3/36700-3 | Sissetulev kiri | ppa | Siseministeerium |
Taotlus | 11.09.2023 | 409 | 2.1-3/33776-1 | Sissetulev kiri | ppa | Kliimaministeerium |